Double roller press granulators are efficient and energy-saving equipment widely used in producing granular fertilizers like organic fertilizer, compound fertilizer, and bio-fertilizer. However, not all raw materials are directly suitable for extrusion granulation. The physical and chemical properties of the material directly affect the granulation results. Physical Property Requirements 1.Appropriate Particle Size Raw materials must be crushed, generally to 80-200 mesh (0.074-0.2mm). Particles that are too coarse make forming difficult, while particles too fine can affect flowability and cause the material to stick to the rollers. 2.Moderate Moisture Content Excessive moisture (>15%) causes material to stick to the rollers and affects demolding. Insufficient moisture (<8%) makes forming difficult, and the granules become brittle. The optimal moisture range is usually 8%-12%, though this may vary based on material characteristics. 3.Good Plasticity Materials need some stickiness and plasticity (like humic acid, composted manure, bentonite) to help improve granule formation rate and hardness.
Chemical Property Requirements 1.Moderate Organic Matter Content For organic fertilizer materials (like compost, humic acid), an organic matter content of 30%-70% is recommended. Too high can lead to loose granules; too low affects fertilizer efficiency. 2.No Corrosive Components Strong acids, strong alkalis, or high-salt substances should be avoided in the raw materials to prevent equipment corrosion or harm to crops. 3.No Hard Impurities Hard objects like stones or metal fragments can damage the double roller press granulator die. Screening or magnetic separation is needed before granulation. Double roller press granulators have strict requirements for raw material particle size, moisture, and binding properties. Selecting suitable materials and optimizing process parameters are essential for producing high-strength, qualified granular fertilizer.
In today’s era where the circular economy is widely recognized, various granulation equipment is redefining the value of “waste” in its own way.
Stepping into a modern processing workshop, you’ll see different technological approaches: rotary drum granulators use the rotation of rollers to agglomerate materials into granules; while ring die pelleting machines, with their ring die structure, demonstrate high-efficiency production capacity in the feed and fuel sectors. Meanwhile, fertilizer compaction machines are focusing on transforming organic waste into valuable fertilizer products.
Within this diverse technological landscape, flat die pelleting machines maintain a unique balance. They don’t pursue exaggerated output, but rather achieve a perfect balance between pressure and efficiency within a compact space. This design gives them a unique advantage in small- to medium-scale production, especially with the emergence of new type two in one organic fertilizer granulators that combine mixing and granulation in a single unit, further simplifying the production process.
Even more commendable is the inclusivity of this technological family. From the reuse of agricultural and forestry waste to the molding of chemical raw materials, from traditional feed production to the emerging biomass energy sector, different granulation equipment showcases its strengths. Together, they form a bridge connecting different industries, allowing resources to continuously increase in value through cross-sectoral circulation.
With sustainable development becoming a global issue, the value of granulation technology has transcended that of a mere processing tool. Whether it’s a basic fertilizer compaction machine or an integrated, innovative model, they all embody the modern meaning of “turning waste into treasure” in the most practical way.
The production of high-quality bio-organic fertilizer relies on the efficient synergy of a complete set of bio-organic fertilizer equipment. From raw material composting to finished product molding, each stage is supported by dedicated core equipment.
In the raw material fermentation stage, the large wheel compost turning machine plays a crucial role. Through the rotation and turning of the large wheel, it effectively breaks up the raw material piles, allowing the material to fully contact the air. This not only rapidly increases the fermentation temperature and inhibits the growth of harmful bacteria, but also ensures uniform composting of the raw materials, laying a high-quality foundation for subsequent production. Insufficient turning can easily lead to insufficient composting of raw materials, directly affecting the subsequent mixing and granulation effects.
The composted raw materials need to be precisely mixed by a fertilizer mixer machine. At this stage, the composted raw materials, beneficial microbial agents, and auxiliary materials are added to the equipment in proportion. Mixing ensures the even distribution of each component, preventing localized nutrient enrichment or deficiency. Uniform material mixing is an important prerequisite for ensuring the quality of subsequent granulation and a key step in improving the effectiveness of bio-organic fertilizer.
In the granulation stage, the fertilizer granulator is the core equipment, and the flat die pelleting machine, due to its strong adaptability, is a commonly used type in bio-organic fertilizer production. The flat die pelleting machine produces high-strength, uniformly sized granular products through mold extrusion. During operation, the pressure and speed of the flat die pelleting machine need to be precisely adjusted according to the moisture content and particle size of the mixed materials to ensure stable granule formation and reduce material waste.
The core of fertilizer production line configuration is “raw material adaptation.” Different raw materials (moisture content, particle size, and composition) require significantly different choices of pre-treatment, fermentation, and granulation equipment. Blindly copying generic solutions easily leads to low capacity, poor product quality, and high energy consumption.
If the raw material is high-moisture livestock and poultry manure (such as chicken manure, pig manure, with a moisture content of 60%-80%): the pre-treatment stage requires a solid-liquid separator and crushing and screening equipment to reduce moisture to 55%-60%, remove impurities, and finely process the material; the fermentation stage uses a trough-type or crawler-type compost turning machine to ensure ventilation and oxygen supply, accelerating decomposition; the granulation stage prioritizes an organic fertilizer disc granulator (wet granulation), paired with a dryer and cooler, to adapt to the molding needs of high-moisture raw materials, followed by a screening machine and packaging machine to complete the entire process.
If the raw material is dry, loose organic material (such as straw, sawdust, with a moisture content of 10%-20%): the core of pre-treatment is crushing and mixing, using a high-speed crusher to refine the raw material to 2-5 centimeters, and then mixing it with livestock and poultry manure and fermentation agents to adjust moisture and carbon-nitrogen ratio; the fermentation stage can use a windrow compost turning machine, adapting to the turning needs of loose materials; the granulation stage is suitable for a double roller press granulator (dry granulation), requiring no additional water, directly extruding and forming the material.
If the raw material is industrial organic waste residue (such as mushroom residue, pharmaceutical residue, with complex composition): a pre-treatment screening stage needs to be added to remove heavy metals and other harmful impurities, and then a special mixer is used to precisely adjust nutrients; the fermentation stage uses a closed trough-type compost turning machine to control odor diffusion; the granulation stage selects a flat die or ring die pelleting machine based on the viscosity of the waste residue.
Core adaptation principle: First, clarify the three key indicators of raw material moisture content, particle size, and composition, and then sequentially match the core equipment for pre-treatment, fermentation, etc.
NPK bulk blend fertilizer (BB fertilizer) is crucial for precision fertilization. Its production quality directly depends on the characteristics of the raw materials. A high-quality NPK blending fertilizer production line has strict requirements for the input materials – only raw materials meeting the standards can guarantee the uniformity and nutrient effectiveness of the final fertilizer. 1.Physical Requirements Uniform Particle Size (1-4mm optimal): Individual fertilizer particles need very similar sizes (variation within 30%). Recommended materials include rotary drum granulator or extrusion granulated urea, DAP, etc. Avoid directly blending powdered and granular materials. Moisture Content ≤ 2%: High moisture causes material caking and equipment clogging. Special attention is needed for hygroscopic materials like MOP (muriate of potash) and SOP (sulfate of potash). Similar Bulk Density: The density difference between components should be within ±20%. Typical density range: 0.9-1.2 g/cm³.
2.Chemical Requirements Chemical Compatibility: Avoid direct mixing of urea with SSP (single superphosphate) (risk of moisture release). Fertilizers containing nitrate nitrogen are incompatible with liming materials. Neutral pH: Ideal pH range: 6.5-7.5. Strongly acidic or alkaline materials require pre-treatment. 3.Raw Material Selection Suggestions Nitrogen Source: Granular urea (large particle), ammonium sulfate (particle size 2-3mm). Phosphorus Source: MAP (monoammonium phosphate), DAP (diammonium phosphate). Potassium Source: Granular red MOP (muriate of potash), SOP (sulfate of potash). Secondary or Micronutrients: Require chelation or coating treatment. By strictly controlling raw material parameters like particle size, moisture, and density, and by scientifically designing the production process, NPK blending fertilizer production lines can produce high-quality, uniform nutrient, easy-to-apply fertilizers.
In the final stage of organic fertilizer production, the steady rotation of a rotary screener machine is always a common sight. Unlike the vigorous turning and tossing of the upstream fermentation equipment or the forceful extrusion of the downstream granulation equipment, it plays an indispensable role as a “quality inspector” in the entire organic fertilizer production line.
After thorough aerobic fermentation by the large wheel compost turning machine, the material becomes loose and uniform. Subsequently, these raw materials may be processed into granules of specific sizes by a fertilizer compaction machine. However, whether it’s powdered or granular fertilizer, it ultimately needs to undergo fine screening by a rotary drum screen.
When the material enters the rotating drum, the separation process begins quietly. The screen mesh on the inner wall of the drum acts like a precise filter, automatically separating qualified products from substandard ones. Excessively fine powder falls from the lower screen, uniformly sized finished products are collected in the middle, while any excessively large lumps or impurities are directed to the outlet. The entire process is smooth and efficient, requiring no manual intervention yet achieving precise grading.
In the organic fertilizer production equipment system, the rotary screener machine ensures the purity and consistency of the final product, allowing the efforts of the fermentation process and the results of the granulation process to be perfectly presented. This simple and effective sorting method makes the final quality control of organic fertilizer production simple and reliable.
In the core stage of the bio-organic fertilizer production line, chain crushers and ring die pelleting machines, as key bio-organic fertilizer equipment, have a highly efficient connection that directly determines the molding rate and quality of the granular product. Unlike the initial crushing and fermentation stages of raw materials, these two pieces of equipment focus on fine processing and molding before granulation, and are important supports for achieving large-scale production.
The chain crusher undertakes the task of secondary fine crushing before granulation in the production line. Although the organic fertilizer raw materials have been initially composted after fermentation, some lumps or coarse particles may still remain. If these are directly fed into the granulation stage, it will lead to uneven particle formation and insufficient hardness.
The finely processed raw materials from the chain crusher are then transported to the ring die pelleting machine for molding. As the core granulation equipment in the bio-organic fertilizer production line, the ring die pelleting machine, with its unique ring die and roller structure, processes the raw materials into regular granules through extrusion molding. Its advantages lie in its high molding rate, moderate particle hardness, and adaptability to a variety of composted organic fertilizer raw materials. The resulting granules are not only easy to store and transport but also ensure slow nutrient release. In the entire production line, it forms a seamless connection of “crushing →granulation” with the chain crusher, effectively improving production efficiency.
The synergistic operation of the chain crusher and the ring die pelleting machine demonstrates the advantages of professional equipment matching in bio-organic fertilizer production and provides strong support for standardized and high-quality production in the bio-organic fertilizer production line.
Bio-organic fertilizer production relies on the coordinated operation of a complete set of bio-organic fertilizer equipment, among which mixing and granulation are the core links that determine product quality. As an important piece of equipment in the mixing process, the vertical disc mixer has become the preferred choice for many production lines due to its unique structural advantages.
In bio-organic fertilizer production, the fertilizer mixer plays a crucial role in mixing raw materials. The vertical disc mixer, as a mainstream type, features high mixing uniformity and low energy consumption. During operation, the composted organic fertilizer raw materials, auxiliary materials, and beneficial microbial agents are added in proportion, and the materials are thoroughly mixed through the rotation of the disc. It is necessary to control the feeding speed to avoid material accumulation affecting the mixing effect, and to adjust the mixing speed according to the material humidity to prevent clumping or uneven mixing.
The uniformly mixed materials processed by the vertical disc mixer and other fertilizer mixer machines then need to enter the fertilizer granulator for shaping. The quality of the granulation process is closely related to the mixing effect; uniformly mixed materials ensure consistent nutrient content and sufficient strength of the granules. During production, it is necessary to accurately adjust the speed, pressure, and other parameters of the fertilizer granulator according to the characteristics of the mixed materials, and to use an appropriate moisture content to produce regular, easy-to-store and transport bio-organic fertilizer granules.
In summary, in a bio-organic fertilizer production line, it is necessary to precisely control the operating details of the fertilizer mixer and ensure proper coordination with the fertilizer granulator to consistently produce high-quality bio-organic fertilizer products.
Against the backdrop of global agriculture’s transformation towards precision and efficiency, coated BB fertilizer production lines, with their dual advantages of flexible formulation and slow-release nutrients, have become core fertilizer production equipment for field crops and cash crops. The coated BB fertilizers they produce are based on traditional blended fertilizers (BB fertilizers) with the addition of a coating process. This retains the flexibility of adjusting the nitrogen, phosphorus, and potassium ratios according to demand, while the coating technology enables long-term nutrient release, perfectly adapting to different soil conditions and crop needs worldwide.
The core value of coated BB fertilizer production lines lies in their customized adaptability. They can quickly switch the nitrogen, phosphorus, and potassium ratios according to the nutrient requirements of different crops (such as field grains, fruits and vegetables, and perennial fruit trees) and soil fertility, producing general-purpose or specialized fertilizers. Whether for field planting seeking rapid yield increases or for medicinal herbs and fruit trees requiring long-term fertilization, the production process can be adjusted to meet the needs. This flexibility makes it widely applicable in various agricultural scenarios worldwide, suitable for everything from small family farms to large-scale planting bases.
This production line boasts a comprehensive and multifunctional product portfolio. Its core products include two types of BB fertilizers: raw material coated fertilizers and finished product coated fertilizers. The raw material coated fertilizers first coat easily soluble raw materials such as urea and potassium fertilizer before blending with other raw materials, achieving a combination of rapid and slow-release effects, with an effective period of 60 to 120 days. The finished product coated fertilizers coat the entire mixture, extending the effective period to 90 to 150 days, suitable for crops requiring long-lasting fertilizer. Simultaneously, the production line can also produce various other types of BB fertilizers, including ordinary BB fertilizers, compound fertilizers, and specialty fertilizers. By adding micronutrients, biological agents, and other auxiliary materials, the added value of the products is further enhanced, and equipment utilization is improved.
Regarding raw material compatibility, the production line has good compatibility with common fertilizer raw materials worldwide. The main raw materials cover various nitrogen, phosphorus, and potassium single-element fertilizers, while auxiliary materials such as micronutrients and humic acid can be flexibly added. Coating agents can also be selected based on environmental requirements and slow-release effects, such as resins, sulfur, and biodegradable materials. This broad raw material adaptability reduces the limitations of raw material procurement in different regions, further enhancing its global promotion value. Furthermore, the product features high nutrient utilization and resistance to moisture and caking, increasing nitrogen fertilizer utilization by 20% to 30%, aligning with the global trend of “reducing fertilizer use and increasing efficiency,” and playing a significant role in promoting green and sustainable agricultural development.
The coated BB fertilizer production line is characterized by automated continuous production. Its precise process design and scientific selection strategy are key to ensuring production efficiency and product quality. This production line integrates six core processes, including raw material pretreatment, precise batching, and coating, to achieve high-efficiency mass production of fertilizers. It can also be customized according to production capacity and process requirements, adapting to the production needs of fertilizer companies of different sizes worldwide.
The core technology of the production line lies in the precise control and efficient collaboration throughout the entire process. The complete process encompasses six key stages: raw material pretreatment, through screening and crushing, ensures the raw material particle size meets standards and is free of impurities; the precision batching stage employs electronic quantitative scales and a PLC control system, achieving batching accuracy up to the industry standard of ±0.5%, supporting one-click switching of over a hundred formulas; the mixing stage uses a twin-shaft paddle mixer to ensure uniform distribution of raw materials and prevent stratification during storage and transportation; the coating stage, a core feature, offers two processes: “raw material coating + blending” or “finished product coating,” using low-temperature control (40~60℃) to ensure coating uniformity and stability; the drying and cooling stage removes excess moisture and lowers the temperature of the fertilizer granules to prevent damage to the coating layer; finally, screening and packaging complete the finished product shaping. The entire process can be centrally controlled by PLC, achieving a high degree of automation, with only 3-5 people required to operate a medium-sized production line.
Scientific selection requires a comprehensive judgment based on capacity requirements, process positioning, and core equipment performance. In terms of production capacity, small production lines (5~10t/h) are suitable for small-scale fertilizer plants in townships, with low investment and quick return on investment; medium-sized lines (10~30t/h) can cover county-level markets, balancing capacity and flexibility; large lines (above 30t/h) are suitable for large-scale production in provincial and global markets. Regarding process selection, conventional slow-release fertilizers can choose the more cost-effective “raw material coating” process, while high-end fully slow-release fertilizers require the “finished product coating” process. In terms of core equipment priority, high-precision batching scales, high-efficiency mixers, and high-quality coating machines are crucial to ensuring product quality. Simultaneously, they must be equipped with environmental protection equipment such as pulse dust collectors to ensure that dust emissions meet standards.
Conclusion: Coated BB Fertilizer – The Future of Customized Nutrition
In summary, the coated BB fertilizer production line represents a significant advancement in fertilizer technology, merging the flexibility of bulk blending with the efficiency of controlled-release coatings. This synergy enables precise, site-specific nutrient management that is essential for modern sustainable agriculture.
This line stands as a specialized segment within the broader spectrum of professional fertilizer manufacturing equipment. While distinct from processes like a disc granulation production line that uses a disc granulator for shaping, or a roller press granulator production line, it shares the core goal of efficient nutrient delivery. It can be integrated into a larger operation that might also include an organic fertilizer production line utilizing a windrow composting machine. The heart of the BB process is the high-precision npk blending machine, a key component in the npk fertilizer production process. This complementary approach allows manufacturers to offer a complete portfolio, from blended coated products to granulated npk fertilizer production line outputs, meeting diverse global agricultural needs.
Ultimately, by delivering customized nutrient ratios with improved longevity, coated BB fertilizer production provides a powerful tool to enhance crop productivity while advancing the global goals of fertilizer use efficiency and environmental stewardship.
Trough-type compost turners are core equipment in the organic fertilizer fermentation process, and their operating efficiency directly affects the composting cycle, maturation quality, and production efficiency. Many production scenarios experience problems such as insufficient turning, high energy consumption, and frequent equipment failures. However, these issues can be significantly improved through scientific and standardized operation and management.
First, ensure proper raw material pretreatment. The moisture content, particle size, and ratio of composting raw materials are fundamental. The moisture content of the materials should be controlled at 55%-60%, and a fertilizer crusher should be used to adjust the particle size of raw materials such as straw and livestock manure to 2-5 centimeters. Simultaneously, carbon and nitrogen sources should be mixed evenly in the correct proportions.
Second, standardize operating procedures and paths. During operation, a reasonable turning path should be planned, using a “reciprocating progressive” turning method to ensure that the material in each area is fully turned, avoiding missed or repeated turning. The speed of the trough-type compost turning machine should be controlled, and the rotation speed should be adjusted according to the width of the trough and the thickness of the material to ensure that the turning depth meets the standard (generally 30-50 centimeters).
Third, strengthen daily equipment maintenance. Regularly inspect key components of the compost turning machine, such as the blades, tracks, and transmission system. Replace worn blades promptly and tighten loose connections; add lubricating oil as required to ensure smooth operation of the transmission system.
Finally, accurately match the operating frequency. Adjust the turning frequency according to changes in composting temperature. During the high-temperature fermentation period (55-65℃), turning can be performed 1-2 times a day; when the temperature is below 50℃, the frequency should be appropriately reduced. Accurately matching the frequency can meet the oxygen demand of microbial fermentation without wasting energy due to excessive turning.