Detailed process flow of roller press granulator production line

Roller press granulator production lines, with their advantages of cold pressing, energy efficiency, and wide compatibility with raw materials, are widely used in the processing of compound fertilizers and organic fertilizers. They eliminate the need for high-temperature drying, maximizing the retention of raw material activity and nutrients.

Raw Material Pretreatment: First, the raw materials are precisely proportioned according to a preset ratio. Inorganic raw materials such as urea and monoammonium phosphate, or well-rotted organic materials, are mixed with auxiliary materials and fed into a fertilizer mixer for homogenization, ensuring uniform nutrient distribution. Then, the material is processed by crushing and screening equipment to achieve a particle size of 80 mesh or higher, while simultaneously adjusting the moisture content to 8%-12% to avoid clumping or poor forming.

Roller Pressing: The pretreated material is fed into a double roller press granulator. High pressure is applied by a pair of counter-rotating rollers, pressing the loose material into dense flakes or blocks. The roller pressure needs to be finely adjusted according to the material characteristics. Insufficient pressure will result in brittle particles, while excessive pressure may damage the equipment and affect solubility; precise control is essential.

Post-Processing Screening: The raw material is crushed into irregular particles by a crusher, then classified by a fertilizer screener machine. Qualified particles enter subsequent stages, while unqualified coarse particles and fine powder are returned to the pretreatment stage for reprocessing, forming a closed-loop production process and improving raw material utilization. Finally, qualified particles are quantitatively packaged and sealed for storage.

This process is simple and compact, with low energy consumption and strong environmental friendliness. It is suitable for processing various material combinations and is an ideal choice for small- to medium-capacity fertilizer production lines.

How does disc granulation technology differ from other mineral fertilizer granulation methods?

In the field of mineral fertilizer granulation, disc granulation technology holds an important position due to its wide applicability and simple process. Its core differences from mainstream methods such as double roller press granulator and spray granulation are significant.

The granulation principle and process complexity differ markedly. Disc granulation utilizes an inclined rotating disc, using friction and centrifugal force along with a small amount of water to cause the material to roll and agglomerate into shape. The process is simple and requires no complex pre-treatment. Roller extrusion granulation is a dry granulation method, where dry material is compressed into sheets by double rollers, then crushed and screened. It requires no water addition, but strict control of raw material moisture content is necessary. Spray granulation requires the material to be made into a slurry, which is then atomized at high temperature and rapidly cooled to form granules. This process is complex and energy-intensive.

The suitability of raw materials and the characteristics of the finished products also differ. Disc granulation is suitable for various mineral raw materials such as ammonium phosphate and potassium chloride, with raw material moisture content controlled at 15%-25%. The finished product has high sphericity and uniform strength. Roller extrusion granulation is suitable for hard mineral raw materials with a moisture content of 8%-12%. The finished product is mostly columnar, with high strength but poor sphericity. Spray granulation is suitable for easily soluble mineral raw materials. The finished product consists of fine particles, which dissolve quickly but are prone to moisture absorption during storage.

Production capacity and energy consumption are suitable for different production scales. Disc granulators have low energy consumption and low investment costs, making them suitable for small and medium-scale production. Roller extrusion granulation has medium production capacity and moderate energy consumption, suitable for transitional scenarios between small and large-scale production. Spray granulation has a large production capacity but high energy consumption and high equipment investment, making it only suitable for large enterprises.

Packaging and storage of fertilizer granules: A critical aspect for maintaining quality

The packaging and storage of fertilizer granules directly affect their nutrient stability, granule integrity, and shelf life, and must be adapted to the characteristics of granules produced by equipment such as rotary drum granulators and double roller press granulators. The core principle is to isolate the granules from external influences, prevent chemical reactions, and ensure safe storage and transportation, requiring adherence to specific operating procedures.

Packaging focuses on “sealing, leak-proofing, and easy identification.” Granules produced by rotary drum granulators require emphasis on moisture protection, while granules from double roller press granulators require enhanced protection against crushing. The preferred packaging material is a laminated woven bag with a PE liner, sealed with heat sealing or double-stitched seams to prevent leakage. Common packaging sizes are 25kg and 50kg, with labels indicating nutrient content, shelf life, and storage precautions. For granules that are easily hygroscopic or volatile, desiccants or moisture-proof inner liners can be added for enhanced protection.

Storage requires strict control of the environment and stacking methods. Storage spaces must be dry, well-ventilated, cool, and protected from light, with a relative humidity of ≤60% and a temperature of 5-30℃, to prevent granule caking and nutrient decomposition. When stacking, use pallets to elevate the bags 10-15cm from the ground and walls, and maintain a moderate stacking height to prevent crushing of the bottom layer of granules.

Furthermore, fertilizer granules produced by different fertilizer granulator machines should be stored separately to avoid mixing and potential chemical reactions; measures should be taken to prevent rodents and insects, and to prevent contamination. Regular inspections of packaging and granule condition are necessary, and any damage or caking should be addressed promptly.

The core purpose of granulation: Why is it a key production process?

Granulation is not simply the transformation of powder into granules; it is a core method for upgrading material value through morphological reshaping, utilizing equipment such as rotary drum granulators and disc granulators.

It addresses the inherent defects of powdered materials. Powdered materials are prone to severe dusting and clumping, leading to wasted raw materials and safety hazards. After processing with disc granulators and rotary drum granulators, the granules have improved sealing properties, significantly reducing dusting and clumping problems, lowering transportation and storage losses, and creating a safer working environment, meeting the environmental protection requirements of industries such as fertilizers and chemicals.

It allows for precise control of material properties. By adjusting the parameters of the fertilizer granulator, the size and strength of the granules can be controlled, optimizing the dissolution and release efficiency of the material. In agriculture, granular fertilizers produced by rotary drum and disc granulators can achieve slow-release of nutrients; in the chemical industry, double roller press granulators can customize granule morphology to improve reaction rates.

It achieves component homogenization. Granulators allow multi-component materials to be tightly combined, preventing imbalances in proportions during use. Granular products have regular shapes and controllable quality, making it easy to create standardized products and increasing market acceptance.

In summary, granulation, relying on various specialized equipment, solves production pain points through morphological optimization, giving materials better performance and economic value. This is the fundamental reason why it has become an indispensable part of many industries.

Understanding the essence, value, and applications of granulation technology

Granulation technology is a processing technique that transforms powdered, lumpy, or liquid raw materials into granular products of specific size, strength, and shape through physical, chemical, or biological methods. Its core purpose is to optimize the characteristics of raw materials and solve problems such as dust generation, difficulty in storage and transportation, and uneven mixing of powdered materials.

The core value of granulation technology lies not only in improving the physical form of materials but also in enabling precise control of nutrients or components. In the agricultural field, powdered fertilizers, after granulation, become uniform in size and have moderate strength, preventing scattering during application and improving utilization. It also allows for the proportional mixing of multiple nutrients during granulation, enabling balanced fertilization.

Mainstream granulation technologies are divided into two categories: physical granulation and chemical granulation, with physical granulation being the most widely used. Physical granulation relies on mechanical force or physical action for shaping. Common types include rotary drum granulation,double roller press granulation, and disc granulation technology. For example, rotary drum granulators use centrifugal force and friction to roll and shape the material, while double roller press granulators use high pressure to densify powdered materials without requiring excessive binders. Chemical granulation, on the other hand, utilizes chemical reactions to produce granular products from raw materials and is mostly used in the production of specific chemical products.

In addition to agricultural fertilizer production, granulation technology is also widely used in pharmaceutical tablet formation, food and feed pellet processing. With technological advancements, granulation technology is increasingly focused on environmental protection and efficiency, further improving processing stability and product quality.

How to better utilize double roller press granulators in fertilizer granulation?

Double roller press granulators, with their advantages of dry granulation, no drying required, and low energy consumption, are commonly used equipment in fertilizer production lines. Achieving a high molding rate and stable particle strength is crucial, and this depends on controlling raw material suitability, parameter adjustment, and standardized operation.

Raw material pretreatment is fundamental. The moisture content of the raw materials should be controlled between 8% and 12%; too high a moisture content can lead to roller sticking and clumping, while too low a moisture content makes molding difficult. After crushing and screening, ensure the particle size is ≤2mm, and thoroughly mix the materials using a fertilizer mixer machine to avoid uneven composition. Coarse fiber and high-hardness raw materials need to be softened in advance to reduce the extrusion load.

Precise parameter adjustment is key. Adjust the roller gap (0.5-2mm) according to the target particle size; a gap that is too large results in loose particles, while a gap that is too small leads to high energy consumption and easy wear of the roller surface. Match the appropriate roller pressure and rotation speed according to the characteristics of the raw materials—increase the roller pressure and decrease the rotation speed for high-hardness materials, and vice versa for lightweight materials, ensuring a molding rate of ≥90%.

Standardized operation and maintenance are essential. Before starting, check the flatness of the roller surface and the lubrication of the transmission system to avoid idling wear; during operation, observe the particle morphology in real time and fine-tune the parameters; after shutdown, clean the residue on the roller surface, regularly polish the roller surface and tighten the connecting parts, and strictly prevent metal impurities from scratching the roller surface.

By mastering these techniques, you can fully utilize the advantages of the double roller press granulator, produce high-quality and stable fertilizer granules, extend equipment life, and adapt to various granulation needs such as NPK compound fertilizers, contributing to improved quality and efficiency in fertilizer production.

How to choose the right fertilizer granulator based on your production needs?

The selection of a fertilizer granulator directly impacts production efficiency, product quality, and overall costs. The key is to match the granulator to your specific production needs. Consider key dimensions such as fertilizer type, production capacity, and finished granule requirements.

Prioritize based on fertilizer type. For organic fertilizers, rotary drum granulators or disc granulators are recommended. Both are suitable for fermented and composted organic materials such as livestock manure and straw. Rotary drum granulators are better suited for large-scale production, while disc granulators are suitable for small to medium-sized production capacities and scenarios requiring high granule uniformity. For compound fertilizers, consider rotary drum granulators or double roller press granulators. Rotary drum granulators are suitable for multi-material mixing and granulation, while double roller press granulators do not require additional water and are suitable for heat-sensitive and water-soluble raw materials.

Refine your selection based on production capacity. For small to medium capacities (50-200 tons per day), a disc granulator is a good choice due to its small footprint, simple operation, and low investment cost. For medium to large capacities (over 200 tons per day), a rotary drum granulator is recommended due to its strong continuous production capacity and high stability, and it can be integrated into a complete production line for automated operation. For small-batch trial production or processing of special materials, the flexibility of a double roller press granulator is more advantageous.

Consider finished granule requirements and costs. If high granule strength and uniform particle size are required, rotary drum granulators and double roller press granulators perform better; for high granule roundness requirements, a disc granulator is the preferred choice. Also consider energy consumption and environmental requirements, prioritizing models with good sealing and effective dust control to reduce future environmental investment. By considering all these dimensions, you can select a granulator that perfectly matches your production needs.

Double roller press granulator and roller press granulation production line: The synergy of core equipment and system

In the field of particle preparation, the double roller press granulator and the roller press granulation production line form a core combination. The former is the key granulation equipment, while the latter provides the system support for efficient mass production. Their synergistic operation ensures stable particle quality and improves production efficiency, making them a core configuration in the granulation process for industries such as fertilizers and chemicals.

The double roller press granulator is the “heart” of the roller press granulation production line, with its core function being high-pressure extrusion and molding of raw materials. Its advantages lie in high granulation strength and wide adaptability to raw materials; it can handle both organic fertilizer fermentation materials and chemical dry powder raw materials without the need for excessive binders, ensuring the purity of the finished product.

The roller press granulation production line is a complete system built around the double roller press granulator, encompassing the entire process from raw material pretreatment, core granulation, post-treatment, and intelligent control. Pretreatment ensures that the raw materials meet the required particle size and moisture content; post-treatment (crushing, screening, and drying) optimizes particle quality. Compared to a single piece of equipment, the fertilizer production line significantly reduces manual intervention, improves mass production capacity, and its fully enclosed design controls dust pollution, meeting environmental protection requirements.

The two complement each other: the performance of the double roller press granulator determines the baseline of particle quality, while the configuration of the roller press granulation production line determines the upper limit of production efficiency. In practical applications, it is necessary to match the appropriate equipment and production line based on raw material characteristics and production capacity requirements to achieve both quality and efficiency improvements.

Comparison of flat die, double roller press, and rotary drum granulators: Choosing the Right equipment

Flat die pelleting machines, double roller press granulators, and rotary drum granulators are the mainstream granulation equipment in fertilizer production. These three types differ significantly in core dimensions such as molding principle, raw material suitability, and production capacity and quality. Choosing the right equipment requires considering production scale, raw material characteristics, and product requirements.

Molding Principle and Raw Material Suitability: Flat die pelleting machines form granules through mold extrusion, suitable for both wet and dry raw materials, especially suitable for organic fertilizers and NPK compound fertilizers with moderate viscosity, and have low requirements for raw material particle size; double roller press granulators use double rollers to extrude dry materials for granulation, requiring no water addition, suitable for low-viscosity dry powder raw materials, and can save the drying process; rotary drum granulators form granules through drum rolling and spraying conditioning, more suitable for high-humidity, easily agglomerating fermented organic fertilizer raw materials.

In terms of production capacity and quality, flat die pelleting machines have medium production capacity, suitable for small and medium-scale production, producing granules with high strength and uniform particle size, but the molds are easily damaged; double roller press granulators have adjustable production capacity, suitable for small and medium-scale production, producing granules with high strength and high molding rate, but the shape is less regular; rotary drum granulators have large production capacity, suitable for large-scale continuous production, producing granules with good roundness and excellent appearance, but the strength is low and prone to pulverization.

Selection Suggestions: For small and medium-scale production, prioritizing granule strength and adaptability to multiple raw materials, choose a flat die pelleting machine; for dry material granulation, needing to save on drying costs, and prioritizing hardness, a double roller press granulator is preferred; for large-scale continuous production, focusing on granule appearance, a rotary drum granulator is more suitable.

Overcoming the challenges of traditional granulation: Roller press granulation production lines drive industry upgrades

In the field of granular product manufacturing, traditional granulation often faces challenges such as insufficient particle strength, uneven particle size, high energy consumption, and failure to meet environmental standards. Roller press granulation production lines, with their optimized design, have become the preferred solution to these problems, widely adaptable to the granulation needs of various industries, including fertilizers, chemicals, and feed.

Traditional fertilizer granulation equipment suffers from limited raw material adaptability and low finished product yield. This is especially true for organic fertilizer granulation, where complex raw materials and fluctuating moisture levels can lead to sticking and clumping. The double roller press granulator utilizes a drying-free, room-temperature granulation technology, eliminating the drying process and resulting in lower energy consumption. It can handle a variety of powder raw materials with moisture content ranging from 8% to 20%, stably granulating both organic fertilizer fermentation materials and special chemical powders.

Balancing environmental protection and efficiency is its core advantage. The dust and noise pollution problems of traditional granulation can be solved by the fully enclosed structure and dust collection device of this production line, effectively controlling dust emissions. Combined with a variable frequency speed control motor and PLC intelligent control system, it enables automated continuous production, reducing manual intervention, improving efficiency, and minimizing operational errors.

Its industry adaptability is extensive: the fertilizer industry can produce organic-inorganic compound fertilizer granules, ensuring uniform nutrient distribution; the chemical industry can process heat-sensitive and corrosive raw materials, preventing deterioration; and the feed industry can produce high-strength granules of additives, preventing breakage during transportation.