Organic fertilizer production line processing chicken manure: A comprehensive analysis of key considerations

Chicken manure, rich in nutrients and widely available, is a high-quality raw material for organic fertilizer production. However, due to its high moisture content, susceptibility to fermentation and spoilage, and the presence of impurities, key processes must be carefully controlled to ensure product quality and smooth production.

Pretreatment is fundamental. Fresh chicken manure typically has a moisture content of 70%-80%. It needs to be reduced to 55%-60% using organic fertilizer production equipment to prevent anaerobic putrefaction during fermentation. Simultaneously, impurities such as stones, plastics, and feathers must be removed manually or mechanically to prevent damage to subsequent equipment. If the chicken manure is severely clumped, it needs to be crushed to ensure uniform particle size, laying the foundation for fermentation.

The fermentation stage is crucial. Chicken manure has a high nitrogen content and needs to be mixed with straw, sawdust, and other carbon source materials in a specific ratio to adjust the carbon-to-nitrogen ratio to 25-30:1, promoting microbial activity. During fermentation, the compost pile needs to be turned regularly using a compost turning machine to ensure aeration and maintain a high temperature of 55-65℃ for 7-15 days to achieve sterilization, insect control, and decomposition.

Subsequent processing must be standardized. The decomposed chicken manure needs to be crushed and screened again to ensure there are no large pieces of uncomposted material, with a particle size controlled within 2 mm for easy granulation. During granulation, the material moisture content must be controlled at 20%-30% to avoid clogging the die holes; the drying temperature should not exceed 80℃ to prevent damage to organic matter and beneficial microorganisms. Simultaneously, the entire organic fertilizer production line must be properly sealed and deodorized to reduce odor diffusion and meet environmental protection requirements.

The connecting process of flat die granulator in organic fertilizer production line

In the overall process of an organic fertilizer production line, the flat die granulator plays a crucial “bridging” role. It receives the organic fertilizer raw materials from the preceding processes, after fermentation, crushing, and mixing, transforming the loose, powdery material into structurally stable granules, laying the foundation for subsequent drying, cooling, and packaging stages.

From a working principle perspective, the flat die granulator uses a motor-driven transmission mechanism to rotate the pressure rollers. When the raw material enters the machine, the pressure rollers exert extrusion force on the material, forcing it through pre-set die holes on the flat die, ultimately forming cylindrical or other shaped granules. This process requires minimal binders, relying primarily on the material’s own viscosity and extrusion force to achieve shaping, thus preserving the nutritional components of the organic fertilizer while avoiding the potential impact of chemicals on the soil.

For organic fertilizer production, the flat die granulator not only solves the problems of dust and caking during raw material transportation, but also controls the diameter and hardness of the granules by adjusting the die size and pressure roller pressure, meeting the needs of different crops and different fertilization scenarios. It is one of the indispensable core equipment in the production line.

Intelligent control: Improving the stability of organic fertilizer production lines

With the large-scale development of organic fertilizer production, intelligent control has gradually become a core means of improving organic fertilizer production line stability. Compared to traditional manual monitoring, intelligent systems can precisely control key parameters, reduce operational errors, and ensure consistent finished product quality.

Intelligent control is primarily applied in three key areas: First, fermentation process monitoring. By deploying temperature, humidity, and oxygen concentration sensors, the system collects real-time data from the fermentation chamber. When parameters deviate from the appropriate range, the system automatically triggers an alarm and adjusts the turning frequency and ventilation volume to prevent under- or over-roasting of the material. Second, granulation process control. Based on changes in material moisture content, the system automatically adjusts the fertilizer granulator machine speed and binder dosage to minimize problems such as granule clumping and breakage. Third, production data management. The system automatically records operational data from each stage, creating a production ledger that facilitates process traceability and allows for optimization of process parameters through data review.

This intelligent transformation of organic fertilizer production lines does not require replacing core equipment; it is often achieved through the addition of sensors and upgraded control systems. This reduces labor costs and improves the yield of finished products, making it suitable for small and medium-sized production enterprises to implement gradually.

Scientific proportioning: The core process and application value of an NPK fertilizer production line

As a compound fertilizer with a synergistic combination of nitrogen, phosphorus, and potassium, NPK fertilizer production requires standardized production lines for large-scale production. Through the coordinated operation of multiple links, NPK fertilizer production lines efficiently transform raw materials into finished products, providing agricultural production with high-quality fertilizers with balanced nutrients.

The core processes of an NPK fertilizer production line revolve around “precise proportioning, uniform mixing, and stable forming.” First, in the raw material pretreatment stage, nitrogen, phosphorus, and potassium fertilizers (such as urea, monoammonium phosphate) and fillers are crushed and screened to ensure uniform particle size and prevent large particles from affecting subsequent mixing and granulation.

Next, in the mixing stage, an automated batching system precisely measures each raw material according to a preset formula. The raw materials are then fed into a mixing device for thorough mixing. The uniformity of the mixing directly determines the nutrient consistency of the fertilizer. The granulation process is the core of the production line. The raw material mixture is conveyed through a conveyor into the NPK fertilizer granulator machine, where it is tumbled or extruded with the aid of a binder to form granules. The granules’ shape and strength must be adapted to subsequent storage and transportation requirements.

After granulation, the wet granules enter a drying and cooling system, where they are dried with hot air to reduce moisture. They are then cooled to room temperature by a cooling device to prevent the granules from clumping and deteriorating. Finally, after screening and grading, qualified granules are packaged, while unqualified granules are crushed and returned to the granulator for reuse, thus achieving resource recycling.

Efficient production in the organic fertilizer industry

The organic fertilizer industry is experiencing rapid growth. With the growing adoption of green agricultural development, market demand for organic fertilizer continues to grow, driving both innovations in raw material processing and the upgrading of production technologies.

Granulation is a key step in the organic fertilizer production process, directly impacting the product’s granule shape and application efficiency. Flat die granulators play a crucial role in this process. These machines extrude fermented and decomposed organic materials into uniform, solid granules, facilitating transportation and storage while also facilitating mechanized fertilization.

The advantages of flat die granulators lie in their adaptability, ability to process a wide range of organic materials, and relatively relaxed requirements for raw material moisture content. This relatively simple structure and easy operation and maintenance make them widely used by small and medium-sized organic fertilizer manufacturers. Flat die granulators offer a high granulation rate and moderate granule strength, helping to reduce dust issues during use.

Currently, the organic fertilizer industry is moving towards scale and standardization. Technological advances in production equipment, particularly the continuous optimization of the granulation process, have provided strong support for improving product quality and production efficiency. With the iteration of technology, organic fertilizer production in the future will be more efficient and energy-saving, contributing more to sustainable agriculture.

Disc granulator: An efficient “Pellet Former” in fertilizer production

In fertilizer granulation production, disc granulators, with their simple structure and easy operation, have become a common tool for small and medium-sized fertilizer companies. They are particularly widely used in granulating compound and organic fertilizer raw materials.

In terms of its core structure, a disc granulator primarily consists of an inclined disc, a transmission system, a distributor, a spray system, and a frame. The disc’s tilt angle and rotational speed are key parameters. Typically, the tilt angle is controlled between 15° and 30°, and the rotational speed is maintained between 15 and 30 rpm. By adjusting these two parameters, fertilizer raw materials of varying moisture and particle size can be accommodated. The transmission system often utilizes a gear reduction design to ensure smooth disc operation and prevent uneven particle size due to speed fluctuations.

During operation, the mixed fertilizer raw materials are evenly delivered by the distributor into the rotating disc. As the disc rotates, the raw materials roll along the inner wall of the disc under the combined effects of centrifugal force, gravity, and friction. At this point, the spray device precisely applies the binder, gradually agglomerating the raw materials into small particles. As the particles continue to roll, they absorb the raw materials and grow larger. Once they reach the desired particle size, they overflow from the edge of the disc and enter the subsequent stages.

This disc granulator offers advantages in highly uniform granulation, low energy consumption, and low maintenance costs; only regular inspections of the disc wear and lubrication of the transmission components are required.

Flat die granulator: An eco-friendly tool for fertilizer pellet formation

In the production of organic and compound fertilizers, pellet formation is a key step in determining fertilizer quality. Flat die granulators, with their adaptability and low energy consumption, have become a mainstream piece of equipment in the industry.

This flat die granulator operates with a clear and efficient process: powdered raw materials fed from a hopper enter the granulation chamber, where they are squeezed into the die holes by the relative motion of a roller and a flat die. The exit cutter then cuts them into uniform cylindrical pellets, eliminating the need for complex pretreatment.

Its core advantages lie in three key areas: a granulation rate exceeding 90%, uniform pellet strength, and the preservation of nutrients such as nitrogen, phosphorus, and potassium. It is compatible with a wide range of organic materials, including livestock and poultry manure, straw, and humic acid, and can even successfully form crude fiber materials with low cohesiveness. Furthermore, it eliminates the need for additional drying, enabling direct pelletization with a moisture content of 20%-40%, significantly reducing energy costs.

Amid the trend toward green agriculture, flat die granulator environmental value is particularly prominent. Converting agricultural waste into structured granular fertilizer not only solves the pollution problem of straw and feces, but also improves fertilizer application efficiency. By using molds with different apertures, granule specifications can be flexibly adjusted to meet diverse fertilization needs.

Fertilizer granulator machines: Adaptation strategies for different fertilizer types

Many fertilizer companies switch product categories based on market demand. However, if the compatibility of the fertilizer granulator machine with the fertilizer type is neglected, problems such as reduced granule quality and frequent equipment failures can occur.

For organic fertilizers (including straw and fermented manure), the key requirement is “adaptability to the fiber raw material and avoid entanglement and machine blockage.” Flat die granulators or rotary drum granulators are preferred. The vertical extrusion design of the flat die cuts long fibers, and the trapezoidal, non-slip rollers reduce fiber entanglement. Rotary drum granulators use rolling to form the granules, and the lifting plate evenly lifts the fiber material to avoid localized accumulation.

For compound fertilizers (containing phosphate rock and potassium chloride), the key requirements are “high granule hardness and transport resistance.” The high compression ratio of the ring die granulator allows hard mineral raw materials to be extruded with a compressive strength of over 15N, meeting the requirements of long-distance transportation.

For biofertilizers (containing functional microbial agents), the key principle is “low-temperature granulation to protect the activity of the agents.” A flat die granulator (chamber temperature ≤ 40°C) or a disc granulator (rolling, no high-temperature extrusion) can prevent inactivation of microbial agents.

For slow-release fertilizers (including coating materials), “smooth granules suitable for subsequent coating” are required. The rolling forming method of a rotary drum granulator produces smooth, uniformly sized granules, which prevent the coating from detaching during coating.

NPK fertilizer granulator machine: A key equipment for efficient fertilizer production

In the process of agricultural modernization, NPK compound fertilizer, containing the three core nutrients of nitrogen, phosphorus, and potassium, has become a crucial factor in increasing crop yields. As the core equipment for converting NPK raw materials into practical fertilizers, NPK fertilizer granulator machines are profoundly impacting the fertilizer industry’s production efficiency and product quality.

The core value of NPK fertilizer granulator machines lies in resolving raw material form issues. Through the granulator’s physical processing, powdered raw materials are extruded and shaped into uniform granules. This not only improves fertilizer stability, facilitating long-distance transportation and long-term storage, but also ensures a slow release of nutrients during application, improving crop absorption.

Furthermore, NPK fertilizer granulator machines offer significant advantages: high efficiency and adaptability. Modern granulation equipment can adjust parameters based on different raw material ratios to meet the production needs of various NPK compound fertilizers, including those high in nitrogen, phosphorus, and potassium. Furthermore, the equipment’s energy consumption is continuously optimized, increasing production speed while reducing operating costs.

For the fertilizer industry, NPK fertilizer granulator machines are not only a production tool but also a key to enhancing product competitiveness. With the growing demand for high-efficiency fertilizers in agriculture, NPK fertilizer granulator machines will undoubtedly continue to play a vital role in driving the fertilizer industry towards greater efficiency and higher quality.

Double roller press granulators empower green fertilizer production

With the advancement of green agriculture, “environmental protection and resource utilization” have become core priorities in fertilizer production. Double roller press granulators (fertilizer compaction machines), with their outstanding environmental performance and resource utilization, have become key equipment for green fertilizer processing.

The double roller press granulator offers significant technological advantages in improving fertilizer quality. The fertilizer granules formed through physical extrusion have uniform density and high hardness, making them less prone to breakage and clumping during transportation and storage. More importantly, after application to the soil, these granular fertilizers release nutrients at a steady rate, extending their effective life and reducing the loss of nutrients such as nitrogen, phosphorus, and potassium through rainwater erosion.

The double roller press granulator’s environmental value is also reflected in its raw material processing and energy consumption control. The double roller press granulator can directly process agricultural waste such as fermented livestock and poultry manure, composted straw, and fruit and vegetable residues, transforming “waste” into high-quality organic fertilizer and achieving resource recycling. The equipment also eliminates the need for high-temperature drying, reducing emissions from coal or gas combustion. Its enclosed conveying design effectively controls dust spillage, improving the production environment.

Furthermore, its operation and maintenance requirements are low. Its simple structure and clear procedures allow workers to master the process after a short training period. Routine maintenance requires only regular inspection of the squeeze rollers for wear and cleaning of the feed channel, significantly reducing operational costs for small and medium-sized fertilizer companies.