Key considerations for fertilizer coating machine selection

When selecting a coating machine, fertilizer companies should consider their own production needs and focus on three key factors to avoid mismatching the equipment with their production.

First, consider compatibility with the particle characteristics. For large fertilizer particles (diameters over 5mm), a wide-channel coating machine with an anti-sticking guide structure is recommended to prevent particle accumulation and blockage within the channel. For particles with high moisture content (above 12%), a conveyor assembly with an anti-stick coating is preferred. For organic fertilizer particles containing fibrous impurities, it is also important to confirm whether the coating machine is equipped with a pre-filter to prevent impurities from entanglement with mechanical components.

Second, consider capacity compatibility. For small-scale production (daily production capacity under 50 tons), a batch coating machine can be selected, offering flexible batch adjustments and suitable for producing a variety of fertilizers in small batches. For large-scale production (daily production capacity over 100 tons), a continuous machine is recommended to ensure that the conveyor speed is synchronized with the material feed rate.

Finally, consider the compatibility of the coating material. If using PE film, confirm that the equipment’s heat-sealing temperature range covers 100-130°C. If using functional coating materials (such as films containing anti-caking agents), check that the equipment’s tension system supports low-tension adjustment to avoid film breakage and impacting performance. Additionally, pay attention to the equipment’s adaptability to film widths and whether it can be flexibly adjusted to accommodate different packaging specifications, minimizing material waste due to film mismatches.

Controlling pellet strength in ring die pelleting machines: Key to fertilizer transportation and storage

Pellet strength is a core performance indicator for fertilizer products. Ring die pelleting machines require multi-step control to ensure pellets can withstand the pressure of transportation and stacking, minimizing breakage and loss.

First, consider the raw material ratio. If the organic matter content in production is too high (over 60%), binders such as clay and bentonite should be added (control the amount to 3%-5%) to increase the viscosity of the raw materials and lay the foundation for pellet strength.

If the proportion of inorganic fertilizer is high, the moisture content of the raw materials should be controlled between 14% and 16% to avoid pellet brittleness caused by too low a moisture content and easy sticking to the ring die pelleting machine due to too high a moisture content.

Selecting the ring die pelleting machine compression ratio is also crucial. The compression ratio (the ratio of the ring die aperture to the effective thickness) should be adjusted according to the fertilizer type. For organic fertilizers with high fiber content, a low compression ratio of 1:8-1:10 is recommended to prevent pellets from being too hard and easily broken. For compound fertilizers, a high compression ratio of 1:12-1:15 is recommended to enhance pellet density. During production, regular spot checks can be performed using a pellet strength tester. If the strength is insufficient, the steam supply to the conditioner can be temporarily increased (by 10%-15%).

In addition, the gap between the roller and the ring die should be controlled within a range of 0.1-0.3mm. A gap too large will cause the raw material to slip, resulting in insufficient pellet density; a gap too small will increase wear and affect pellet consistency. By synergistically controlling these three factors, the compressive strength of fertilizer pellets can be stabilized at above 20N, meeting transportation and storage requirements.

How to adapt a BB fertilizer blender to different raw material characteristics?

BB fertilizer raw materials come in a variety of forms (granular, powdered, and fiber-containing). BB fertilizer blenders require targeted adjustments to accommodate these different raw material characteristics and avoid mixing problems.

For pure granular raw materials (such as urea and diammonium phosphate granules), which have relatively small density differences but are prone to rolling and stratification, the BB fertilizer blender should be equipped with guide plates within the mixer drum to guide the raw materials into upward and downward circulation and control the feed order. Adding the denser diammonium phosphate first, followed by the lighter urea, can reduce initial stratification. The speed can be appropriately reduced in the later stages of mixing to prevent excessive collisions between particles that could lead to breakage.

If the raw materials contain powdered ingredients (such as potassium chloride powder or trace element powder), a dustproof seal should be installed at the BB fertilizer blender feed port to prevent dust from escaping. Additionally, an atomizing humidifier (control the humidity to ≤15%) should be installed within the mixer drum. A small amount of humidification can enhance adhesion between the powdered raw materials and the granules, preventing dust from becoming suspended.

When the raw materials contain fiber organic fertilizer (such as fermented straw powder), it is necessary to use a paddle with a shearing function to prevent the fibers from entangled and clumping. At the same time, the fiber raw materials should be crushed to less than 3mm in advance to reduce mixing resistance. During the mixing process, the machine can be stopped and observed every 3 minutes. If fiber clumps are found, the paddle angle needs to be adjusted to enhance the shearing and dispersion effect to ensure that the fibers and granular fertilizer are fully integrated.

How can you use new type organic fertilizer granulators more efficiently and save energy and materials?

Many organic fertilizer plants are concerned about costs. However, when using new type organic fertilizer granulators, paying attention to two small details can significantly save energy and materials.

To save energy, most new type organic fertilizer granulators are equipped with variable-frequency motors. Avoid running them at maximum speed all the time. For example, when initially feeding, use a low speed of 15 rpm. Once the raw materials have stabilized in the granulation chamber, gradually increase the speed to 20-25 rpm. This prevents the motor from exerting sudden force, saving 10%-15% of energy per hour. Additionally, avoid idling the machine. Do not start the machine until the raw materials are ready. The energy wasted in idling for one hour is enough to generate granules for 20 minutes.

To save materials, the key is to reduce waste. New type organic fertilizer granulators have a return device. Instead of discarding the crushed granules, they are directly returned to the granulation chamber through the return port, where they are mixed with new raw materials and granulated again. This can reduce the waste rate from 10% to less than 3%. Also, do not mix impurities such as stones and iron wire into the raw materials. Impurities will wear out machine parts and crush good particles. Use a sieve before feeding each time to avoid a lot of material waste.

Disc granulators “roll” out rounded fertilizer, while double roller press granulators “press” out hard, dense material

In the forming process of organic and compound fertilizers, disc granulators and double roller press granulators, with their different shaping logics, have become organic fertilizer granulators adaptable to different raw materials and needs. They not only meet the requirements of diverse fertilizer forms but also make the granulation process more aligned with actual production scenarios.

The core of disc granulators is “rolling agglomeration.” This method is more suitable for organic raw materials with moderate moisture content, such as well-rotted cow manure and straw substrates. The formed granules have a smooth appearance and moderate density, which not only promotes microbial survival (especially suitable for bio-organic fertilizers) but also facilitates subsequent storage and mechanized application, preventing clumping.

Double roller press granulators, on the other hand, follow a “pressure shaping” approach. The advantages of this process are that it requires no binder, has high forming efficiency, and produces granules with high hardness and strong moisture resistance. It is particularly suitable for granulating high-concentration fertilizers or dry raw materials, solving the problems of these materials being difficult to agglomerate and prone to scattering.

For those seeking granule roundness and bioactivity, disc granulators are the preferred choice; for those prioritizing high hardness, dry material forming, and binder-free processes, double roller press granulators are more suitable. These technologies address the pain points of fertilizer forming from different perspectives, providing flexible support for the diverse needs of fertilizer production.

Turning straw into fertilizer: The green magic of organic fertilizer production equipment

Under the agricultural trend of “reducing chemical fertilizer use and promoting ecological planting,” organic fertilizer production equipment is quietly rewriting the fate of waste. These unassuming machines use technological power to transform agricultural waste such as straw and livestock manure into “green nutrients” that nourish the soil, becoming invisible heroes of ecological agriculture.

The core logic of organic fertilizer production equipment is simple: to allow organic matter to undergo a “transformation” under scientific conditions. The entire process requires no complicated operations. First, the raw materials such as straw and dead branches are broken down into fine particles by a crushing device. Then, a mixing device mixes them with livestock manure in a specific ratio, adjusting the carbon-to-nitrogen ratio to meet the fermentation requirements. The fermentation stage is crucial. Specialized equipment can precisely control temperature, humidity, and aeration, allowing beneficial microorganisms to efficiently decompose organic matter, shortening the fermentation cycle and thoroughly killing insect eggs and pathogens. Finally, after processing by granulation and drying equipment, the loose fermented material becomes uniformly granulated organic fertilizer that is easy to store and transport.

Compared to traditional composting, these devices solve many pain points. No need for manual turning; automated operation reduces labor intensity. Closed-loop fermentation minimizes odor spread and avoids secondary pollution. More importantly, standardized production ensures more stable nutrient content in organic fertilizer, effectively improving soil compaction.

From field waste to ecological fertilizer, organic fertilizer production equipment bridges the gap in circular agriculture. It not only reduces reliance on chemical fertilizers in agriculture but also makes “turning waste into treasure” a reality, injecting continuous momentum into the development of green agriculture.

Disc granulation production line: A new solution for low-energy, circular organic fertilizer formation

The innovative value of the disc granulation production line lies not only in the pellet forming itself, but also in its core design logic of “low-energy circulation,” perfectly meeting the needs of modern agricultural waste resource utilization.

Its core advantage lies in “highly efficient energy utilization.” The disc granulation production line utilizes the natural forces of gravity and centrifugal force to achieve agglomeration and forming, eliminating the need for additional high-intensity mechanical pressure and significantly reducing motor load. Simultaneously, the frictional heat naturally generated during the material’s rotation within the disc helps evaporate excess moisture, reducing energy consumption in subsequent drying stages.

In terms of raw material recycling, this production line demonstrates strong ecological compatibility. It can efficiently process various agricultural wastes such as straw, livestock manure, and mushroom residue. Especially for “non-standard raw materials” with high moisture content (25%-40%) and low viscosity, stable pelleting can be achieved simply by adjusting the disc’s tilt angle and rotation speed, without complex dehydration or the addition of large amounts of binders.

“Lightweight” operation and maintenance are also unique highlights. The disc granulation production line has a simple structure with no complex transmission or enclosed components. The material flow path is clear, reducing the likelihood of blockages or material residue. Daily cleaning and maintenance require only simple operations, lowering labor costs.

Furthermore, the formed granules, due to their natural agglomeration, have a rich porous structure. When applied to the soil, they quickly integrate into the topsoil, enhancing water and fertilizer retention while promoting soil microbial activity, perfectly aligning with ecological planting principles.

Oil palm empty fruit bunch: “Green Raw Materials” for organic fertilizer production lines

As a major waste product of the oil palm processing industry, oil palm empty fruit bunch, with their rich organic matter and unique physical properties, have become a high-quality raw material for organic fertilizer production lines. Their deep integration with various stages of the production line not only realizes waste resource utilization but also optimizes the organic fertilizer production process.

In the raw material pretreatment stage, oil palm empty fruit bunch need to be processed by crushing equipment to break them into 1-3 mm granular materials. This removes coarse and hard impurities while retaining an appropriate amount of fiber structure. The crushed material is then mixed with livestock and poultry manure, microbial agents, etc., in a specific ratio. Its loose properties naturally adjust the carbon-nitrogen ratio of the mixture while improving its permeability, laying the foundation for subsequent fermentation.

In the fermentation stage, oil palm empty fruit bunch a highly efficient combination with a compost turning machine. During the composting and fermentation of the mixed materials, the fibrous structure of the oil palm empty fruit bunch prevents the pile from compacting, while the periodic turning by the compost turner further enhances aeration, allowing aerobic microorganisms to multiply rapidly and maintaining the composting temperature at a stable 55-65℃.

In the post-processing stage, the composted oil palm empty fruit bunches are suitable for the forming requirements of organic fertilizer granulators. Their residual fiber toughness enhances granule cohesion, preventing breakage due to compression during granulation and avoiding die clogging, thus improving granulation efficiency. The formed granular organic fertilizer, retaining some of its fibrous structure, possesses both long-lasting fertilizing effects and soil-improving functions.

The deep integration of oil palm empty fruit bunch with the organic fertilizer production line solves the waste disposal problem and optimizes the production process through the characteristics of the raw materials.

Organic fertilizer production line processing chicken manure: A comprehensive analysis of key considerations

Chicken manure, rich in nutrients and widely available, is a high-quality raw material for organic fertilizer production. However, due to its high moisture content, susceptibility to fermentation and spoilage, and the presence of impurities, key processes must be carefully controlled to ensure product quality and smooth production.

Pretreatment is fundamental. Fresh chicken manure typically has a moisture content of 70%-80%. It needs to be reduced to 55%-60% using organic fertilizer production equipment to prevent anaerobic putrefaction during fermentation. Simultaneously, impurities such as stones, plastics, and feathers must be removed manually or mechanically to prevent damage to subsequent equipment. If the chicken manure is severely clumped, it needs to be crushed to ensure uniform particle size, laying the foundation for fermentation.

The fermentation stage is crucial. Chicken manure has a high nitrogen content and needs to be mixed with straw, sawdust, and other carbon source materials in a specific ratio to adjust the carbon-to-nitrogen ratio to 25-30:1, promoting microbial activity. During fermentation, the compost pile needs to be turned regularly using a compost turning machine to ensure aeration and maintain a high temperature of 55-65℃ for 7-15 days to achieve sterilization, insect control, and decomposition.

Subsequent processing must be standardized. The decomposed chicken manure needs to be crushed and screened again to ensure there are no large pieces of uncomposted material, with a particle size controlled within 2 mm for easy granulation. During granulation, the material moisture content must be controlled at 20%-30% to avoid clogging the die holes; the drying temperature should not exceed 80℃ to prevent damage to organic matter and beneficial microorganisms. Simultaneously, the entire organic fertilizer production line must be properly sealed and deodorized to reduce odor diffusion and meet environmental protection requirements.

The connecting process of flat die granulator in organic fertilizer production line

In the overall process of an organic fertilizer production line, the flat die granulator plays a crucial “bridging” role. It receives the organic fertilizer raw materials from the preceding processes, after fermentation, crushing, and mixing, transforming the loose, powdery material into structurally stable granules, laying the foundation for subsequent drying, cooling, and packaging stages.

From a working principle perspective, the flat die granulator uses a motor-driven transmission mechanism to rotate the pressure rollers. When the raw material enters the machine, the pressure rollers exert extrusion force on the material, forcing it through pre-set die holes on the flat die, ultimately forming cylindrical or other shaped granules. This process requires minimal binders, relying primarily on the material’s own viscosity and extrusion force to achieve shaping, thus preserving the nutritional components of the organic fertilizer while avoiding the potential impact of chemicals on the soil.

For organic fertilizer production, the flat die granulator not only solves the problems of dust and caking during raw material transportation, but also controls the diameter and hardness of the granules by adjusting the die size and pressure roller pressure, meeting the needs of different crops and different fertilization scenarios. It is one of the indispensable core equipment in the production line.