Standard Operation of a Disc Granulator in Organic Fertilizer Production

The disc granulator, a core component of the organic fertilizer production line, acts as a “shaping craftsman.” Every step directly impacts pellet quality and safe and stable production. To maximize the performance of this critical piece of equipment, a rigorous and organized standard operating procedure is essential.

The 10 minutes before startup are essential. First, inspect the equipment: check for cracks or loosening on the disc liner, ensure adequate lubrication of transmission components (oil level should be 1/2-2/3 of the mark), and tighten the anchor bolts to prevent loosening. Prepare the raw materials: control the moisture content to 25%-35% (if too high, air dry; if too low, add water). Screen out impurities larger than 5mm to prevent clogging. Finally, perform a safety inspection, clear surrounding debris, securely close the guardrails, test the emergency stop button and overload device, and ensure proper functioning of the electrical circuits and instruments.

The 5-minute startup operation must be performed in a sequential manner. First, start auxiliary equipment such as the raw material conveyor and humidifier. Once these equipment stabilizes, start the granulator’s main motor to avoid damage caused by load. Adjust the disc inclination angle according to the material (lower for clay, higher for organic matter, 45°-55°). Set the speed to 15-20 r/min. Once the disc granulator stabilizes, slowly open the feed valve. Initially, feed at 60% of the rated capacity.

Continuous monitoring is required during operation. Check pellet formation every 10 minutes. Acceptable particle size is 2-5mm. If the pellets are too fine, reduce the feed rate or increase the inclination angle. If there is sticking, reduce the water content. Record parameters every 30 minutes. If the motor current is ≤ 90% of the rated value and the bearing temperature is ≤ 65°C, immediately shut down the machine for investigation.

The minimum shutdown time is 15 minutes. First, close the feed valve, drain the material, turn off the humidifier and main motor, clean any remaining material, inspect components for wear, and keep a maintenance log.

During the entire disc granulator operation, operators must strictly adhere to safety procedures at all times, wear dust masks and hard hats, and never open the guardrail while the machine is running. Only by implementing standardized procedures at every stage can safe and efficient organic fertilizer production be truly achieved.

Practical Strategies for Improving the Efficiency of Disc Granulators in Organic Fertilizer Production Lines

In organic fertilizer production lines, the efficiency of disc granulators directly impacts overall production capacity and finished product quality. To maximize equipment performance, systematic optimization is necessary, encompassing multiple aspects, including material compatibility, parameter control, and standardized operation. Specifically, these four key areas can be addressed.

First, effective material pretreatment is fundamental. Organic fertilizer raw materials, such as livestock and poultry manure and straw, often exhibit uneven moisture content and coarse particle size. Dehydration through extrusion or atomization is essential to precisely control the material moisture content to 35%-45%. This avoids low moisture content, which can lead to difficult pellet formation and high reject rates, or high moisture content, which can cause pellet sticking. Furthermore, a hammer mill combined with a vibrating screen can be used to refine the material to a particle size of 80-120 mesh, removing impurities and coarse particles, reducing granulation resistance, and clearing obstacles for subsequent processes.

Second, scientifically adjusting equipment parameters is crucial. The disc inclination angle and speed should be adjusted flexibly based on the material characteristics. Typically, the inclination angle is set at 18°-22°, and the speed is controlled between 15-25 rpm. For highly viscous materials, the inclination angle can be increased and the speed increased to reduce wall sticking. For dry materials, the inclination angle and speed should be reduced to ensure adequate rolling and forming of the pellets. Furthermore, installing an atomizing spray system allows moisture to be evenly applied to the material surface, preventing overwetting and improving pellet uniformity and forming speed.

Furthermore, standardized operational management is essential. Operators must strictly adhere to the procedures of pre-startup inspection, monitoring during operation, and post-shutdown cleaning. Before starting the machine, check bearing lubrication and disc levelness. During startup, control the material feed rate to avoid overloading and resulting in particle size fluctuations. If problems such as overfine particles or wall sticking are detected, fine-tune parameters promptly to minimize downtime and ensure continuous and stable operation.

Finally, regular maintenance can extend the life of the equipment and maintain high efficiency. Clean the discs of residual material and inspect the liner for wear daily. Tighten the liner screws and adjust the drive belt tension weekly. Replace the bearing lubricant and test the motor performance monthly. Promptly replacing worn parts prevents minor faults from becoming major problems, ensuring the disc granulator is always in optimal working condition and helping improve the quality and efficiency of your organic fertilizer production line.

Drum screener machine—A grading expert in compound fertilizer production

In the compound fertilizer production process, separating finished products from recycled materials and achieving uniform grading are critical steps in ensuring quality. The drum screener machine is the core equipment in this process. Its unique design and stable performance have made it a key choice for many fertilizer manufacturers to improve production efficiency.

This drum screener machine utilizes a combined screen design, significantly simplifying routine maintenance and facilitating part replacement. It also allows for flexible adjustments based on the screening requirements of different materials, making it suitable for a variety of compound fertilizer production scenarios. During operation, material enters the drum through the feed inlet. The drive mechanism drives the drum to rotate smoothly, while the vibrating mechanism generates uniform vibrations, thoroughly tumbling and dispersing the material within the drum. Finer materials pass smoothly through the screen holes for separation, while coarser materials move along the drum’s inner wall to the discharge port, achieving efficient separation and precise grading.

Its advantages are significant: screening efficiency far exceeds that of traditional equipment, and the processing capacity meets the high-intensity demands of continuous production, avoiding production interruptions. The equipment is also equipped with a specialized sealing device to effectively reduce dust leakage, complying with the environmental protection requirements of modern industrial production and creating a clean and safe working environment.

For compound fertilizer manufacturers, choosing a high-quality drum screener machine can ensure product particle uniformity from the source, enhance market competitiveness, reduce raw material waste due to substandard screening, and save production costs.

Why is the disc granulator the preferred choice for organic fertilizer production lines?

For the granulation stage of organic fertilizer production lines, disc granulators are the preferred equipment for most manufacturers due to their outstanding advantages, including strong adaptability, high granulation quality, and low operating costs. This equipment not only precisely matches the characteristics of organic fertilizer raw materials but also balances production efficiency and product quality, providing critical support for stable production line operation.

In terms of raw material compatibility, disc granulators are far more compatible with organic fertilizer materials than other equipment. Organic fertilizer raw materials are mostly loose, fibrous materials such as livestock and poultry manure and composted straw, which have large moisture fluctuations. By precisely matching the inclination angle and rotation speed, the disc granulator utilizes the dual effects of the material’s own gravity and centrifugal force to gradually roll the loose material into granules. This eliminates the need for excessive compression, which damages the fiber structure. Furthermore, the disc granulator can accommodate raw materials of varying particle sizes, eliminating the need for frequent adjustments to equipment parameters and significantly reducing operational complexity.

Granulation quality is the core reason for choosing a disc granulator. High-quality organic fertilizer granules require a smooth surface, moderate hardness, and good water solubility for easy storage, transportation, and field application. The disc granulator’s granulation process utilizes a “rolling granulation” mechanism, with the pellets continuously tumbling within the disc. This not only ensures uniform nutrient coating but also creates pellets with consistent density, resulting in a high yield rate. Furthermore, the pellet diameter can be flexibly controlled by adjusting the disc speed, meeting the fertilization needs of different crops.

From a cost-effectiveness perspective, the disc granulator also offers significant advantages. Its simple structure, consisting solely of a disc, transmission, and frame, reduces failure rates and reduces maintenance costs compared to extrusion granulators. In terms of energy consumption, the power output of each unit is moderate, and the energy consumption per unit product is significantly lower than other granulation equipment. Furthermore, the disc granulator’s small footprint allows for flexible integration into production lines of varying sizes. Whether small or medium-sized family farms or large organic fertilizer producers, they can choose the appropriate model based on their production capacity needs, maximizing investment returns.

In response to the demand for green agriculture, the disc granulator, through its efficient and energy-efficient granulation method, helps improve the quality of organic fertilizer products, becoming a crucial link between agricultural waste resource utilization and green farming.

Practical maintenance tips for extending the life of a chain crusher

As a critical piece of equipment in a company’s production, the lifespan of a chain crusher directly impacts its return on investment. Proper routine maintenance can effectively extend its service life, reduce equipment replacement costs, and ensure smooth production.

During daily use, it’s important to regularly inspect the condition of all components. Pay special attention to the wear of the chain and hammer heads, as these components are the heart of crushing. Severe wear can reduce crushing efficiency and should be promptly replaced to avoid impacting crushing efficiency and equipment stability.

Also, check the drive system, including the motor’s operating temperature and the tightness of the transmission belt, to ensure the motor and transmission are operating properly, without abnormal noise or overheating. Any problems identified should be addressed promptly to prevent further malfunctions.

Regular equipment cleaning is also crucial. During the crushing process, material dust easily adheres to the equipment’s interior and screen. Failure to clean the screen promptly can cause screen blockage, affecting crushing particle size and discharge efficiency, and accelerating component wear. When cleaning, first turn off the power to the equipment. Once the chain crusher has completely stopped, open the protective door and clean the interior. Use specialized tools to remove any residual material and dust, ensuring the equipment is free of residual material.

In addition, lubricating oil should be added regularly according to the equipment instructions to keep all moving parts (such as the main shaft, bearings, etc.) well lubricated, reduce friction loss between components, improve the smoothness of equipment operation, and further extend the service life of the equipment.

At the same time, the chain crusher should be regularly inspected and repaired to check for potential faults and hidden dangers to ensure that the equipment is always in good operating condition.

How to Choose the Right Disc Granulator for Your Production Line

In fertilizer production lines, the choice of disc granulator directly impacts production capacity and product quality. Combining the technical specifications and application characteristics of Huaqiang Heavy Industry’s disc granulators, a sound selection requires focusing on four key dimensions.

First, precisely matching production needs is crucial. Equipment requirements vary significantly across industries. For the fertilizer industry, when producing organic fertilizer, rubber or polyurethane-lined models are preferred to avoid corrosion and accommodate fermentable materials like livestock and poultry manure. The recommended rotational speed is 10-18 rpm to preserve organic matter activity. For inorganic compound fertilizer production, ensuring uniform feed distribution and a consistent mixing of nitrogen, phosphorus, and potassium is crucial. Production capacity selection should be based on specific parameters. For example, a small workshop with an hourly production capacity of 0.05-0.15 tons should choose the ZL-500 model, while a large factory with a production capacity of 3.5-6 tons should opt for the ZL-3600 model. A 10%-15% capacity margin should be reserved to account for seasonal fluctuations.

Second, pay close attention to the core configuration details of the equipment. The drive system determines operational stability. For example, the ZL-3600 model, equipped with an 18.5kW motor and a 10r/min speed, can accommodate high-load granulation needs. The disc inclination angle should be adjustable from 30° to 60°, allowing for flexible adjustment based on material viscosity. For example, highly viscous mineral powders require a larger inclination angle of around 50° to reduce wall sticking. The water spray system should be equipped with multiple sets of adjustable nozzles to ensure a stable moisture content of 10%-20% to prevent loose particles and agglomeration. This is crucial for the strength of fertilizer pellets and the quality of metallurgical mineral powder pellets.

Furthermore, a comprehensive assessment of the manufacturer’s capabilities is crucial. Prefer companies like Huaqiang Heavy Industry that have comprehensive production capabilities. Their 12 disc granulator models cover varying production capacity requirements and allow customers to visit their factory for a firsthand understanding of the equipment’s production processes and quality control procedures. Also, consider whether the manufacturer offers customized services.

Finally, prioritize after-sales service and supporting support. Confirm whether the manufacturer offers free installation, commissioning, and operator training to prevent production disruptions caused by improper operation. Equipment packaging must meet transportation standards, such as packaging the main unit bare to minimize impacts and plywood boxes for electrical components. Customized wooden boxes can be used for special transportation needs. Furthermore, the inventory cycle and warranty policy for consumable parts such as nozzles and inner linings must be clearly defined to ensure long-term stable operation of the equipment and reduce future maintenance costs.

Common Problems and Solutions for Disc Granulators in Organic Fertilizer Production Lines

Disc granulators are widely used in organic fertilizer production lines due to their advantages, such as uniform granulation and low cost. However, in actual operation, they are susceptible to various factors, leading to various problems that affect production efficiency and product quality.

Improper control of raw material moisture is a primary challenge. If the moisture content is too high, the raw material will easily clump on the inner wall of the disc, forming large, adhered masses. This not only prevents proper granulation but also increases the difficulty of equipment cleaning. If the moisture content is too low, the raw material will have poor flowability, making it difficult to agglomerate into granules, resulting in loose and easily broken granules. To address this issue, precise control of the raw material moisture content using a moisture meter before granulation is required. Typically, the moisture content is maintained at a stable level of 25%-35%. If the moisture content is not within this range, it should be adjusted promptly using a dryer or humidifier.

Improper disc inclination and rotation speed can also cause problems. If the inclination angle is too large, the raw materials will stay in the disc too short, causing the particles to be discharged before they have time to fully round, resulting in irregularly shaped finished particles. If the inclination angle is too small, the raw materials will pile up, easily causing “sticking” and affecting normal equipment operation. Excessive rotational speed will subject the raw materials to excessive centrifugal force, preventing effective agglomeration. Too slow rotational speed will significantly reduce granulation efficiency. Generally, the disc inclination angle should be adjusted to 35°-45° and the rotational speed to 15-20 rpm, depending on the raw material characteristics. These parameters should be gradually optimized through trial production.

In addition, uneven mixing of raw materials can also affect granulation performance. If the organic raw materials and auxiliary materials are not fully mixed, nutrient imbalances in certain areas can lead to poor granulation quality and uneven particle size. This requires the use of high-efficiency mixing equipment before granulation to ensure that the raw materials are mixed uniformly to a level above 90%. Regular inspection of the mixing blades of the mixing equipment should also be performed to prevent blade wear that may reduce mixing efficiency.

In response to these common problems, a complete inspection mechanism needs to be established during production, and the operating status of the equipment and raw material indicators should be checked regularly, and the process parameters should be adjusted in time to ensure the stable operation of the disc granulator and improve the quality of the finished organic fertilizer.

Why are BB fertilizer mixers the preferred choice for fertilizer production?

In the fertilizer production sector, BB fertilizer mixers, with their significant advantages, have become core equipment for many companies. They are primarily used to mix different types of fertilizer raw materials to produce bulk blended fertilizer (BB fertilizer).

Their most critical advantage is uniform mixing. A stirring mechanism within the mixing drum, coupled with paddle or spiral ribbon impellers, shears, tumbles, and disperses the raw materials, ensuring uniform distribution of nitrogen, phosphorus, potassium, and other components. This prevents nutritional imbalances caused by uneven mixing and ensures consistent product quality.

The machine’s high processing capacity is also a key advantage, meeting the needs of various production scales, from basic production capacity for small and medium-sized enterprises to batch production for large factories. This allows for efficient batch reduction and reduces time and cost.

Furthermore, BB fertilizer mixers feature a simple structure and easy operation. The control system accurately monitors parameters such as mixing speed and time, allowing workers to master the process with minimal training. Maintenance is also convenient, with easy access to core components, significantly reducing the probability of equipment failure.

In addition, the BB fertilizer mixer is highly adaptable and can process fertilizer raw materials of varying properties, including solid particles and powders. Its mixing drum and stirring mechanism are designed for easy cleaning, preventing cross-contamination between batches of raw materials. This meets the stringent hygiene and quality requirements of fertilizer production, providing strong support for companies producing diverse fertilizer products.

Outstanding features of fertilizer production of biological organic fertilizer production line

Amid the wave of green agricultural development, bio-organic fertilizers are becoming a new trend in the fertilizer market due to their eco-friendliness and high nutrient efficiency. Fertilizers produced by specialized bio-organic fertilizer production lines exhibit distinct characteristics through their unique production processes, providing strong support for sustainable agricultural development.

A broad range of raw material sources and environmental friendliness are key features of these production lines. These production lines utilize organic waste, such as livestock and poultry manure, crop straw, garden waste, and food waste, as their primary raw materials. These wastes, which could otherwise pose an environmental burden, are transformed into nutrient-rich organic fertilizers through the production line’s pulverization, composting, and fermentation processes, effectively turning waste into treasure. Compared to traditional chemical fertilizers that rely on non-renewable resources, this production line not only reduces waste disposal costs but also mitigates the pollution caused by indiscriminate storage of organic waste, aligning with the concept of circular agriculture.

A comprehensive nutrient profile and biological activity are key features of these production lines. During the production process, the bio-organic fertilizer production line precisely controls fermentation temperature, humidity, and microbial strain ratio to preserve nutrients such as organic matter, amino acids, and vitamins in the raw materials, while also promoting the proliferation of beneficial microorganisms (such as Bacillus subtilis and lactic acid bacteria). When applied to the soil, this type of fertilizer not only provides crops with slow-release, long-lasting nutrients, preventing the rapid nutrient loss associated with chemical fertilizers, but also improves the soil’s microbial community structure through beneficial microorganisms, enhancing soil aeration and water and nutrient retention. Long-term use can effectively alleviate soil compaction and improve soil fertility.

The green production process and high product safety are also prominent features. The bio-organic fertilizer production line utilizes high-temperature aerobic fermentation technology, which effectively kills pathogens, insect eggs, and weed seeds in the raw materials, reducing the risks of fertilizer use. Furthermore, the production line uses no chemical synthetic additives. Exhaust gas generated during production is treated in biological filters before meeting discharge standards, and wastewater is recycled through a recycling system to reduce waste, ensuring a green and environmentally friendly process from production to use. In addition, the biological organic fertilizers produced have undergone strict testing, and the heavy metal content is far lower than the national standard. After application, it will not cause secondary pollution of the soil, ensuring the quality and safety of agricultural products and meeting consumers’ demand for green and healthy agricultural products.

Benefits of Using a Disc Granulator in Organic Fertilizer Production Lines

Among the core equipment in organic fertilizer production lines, disc granulators are the preferred choice for many companies, especially small and medium-sized production lines, due to their strong adaptability, high-quality granulation, and convenient operation. They significantly improve production efficiency and product quality.

The disc granulator‘s most prominent advantage is its excellent granulation performance. Its unique disc structure uses the synergistic effect of centrifugal force and gravity to create a stable “rolling granulation zone” within the disc, achieving a granulation rate exceeding 90%, far exceeding that of some extrusion granulation equipment. The resulting granules are not only highly rounded and smooth, but also uniform in size (typically controlled within 2-5mm). This not only prevents nutrient loss due to granule breakage during transportation, but also meets the granule shape requirements of mechanized fertilization, significantly enhancing product market acceptance.

Secondly, it offers excellent raw material compatibility. Organic fertilizer raw materials come from a wide range of sources, from decomposed chicken manure and cow dung to straw powder and mushroom residue, with widely varying composition. The disc granulator can easily adapt to different raw material characteristics by adjusting the disc inclination angle (45°-55°), rotation speed (15-20 rpm), and feed rate.

Disc granulators also offer significant advantages in terms of operation and cost. The device boasts a simple structure, with the disc and drive system as its core components. Routine maintenance requires only regular inspections of bearing wear and disc flatness, resulting in maintenance costs approximately 30% lower than those of a drum granulator. Furthermore, its energy consumption is low, with a single unit consuming approximately 5-10 kWh per hour. This makes it suitable for the production needs of small and medium-sized production lines (with a single unit capable of flexibly adjusting daily output to 5-20 tons). The investment threshold is significantly lower than that of large-scale drum granulation equipment, enabling companies to quickly achieve operational and profitability.

Disc granulators also align with green production trends. Their enclosed design reduces dust emission from raw materials, and combined with a spray moisturizing system, they effectively control dust pollution during the production process. Some units can also be integrated into the production line’s waste heat recovery system, further reducing energy consumption. For organic fertilizer production companies that pursue high efficiency, economy and environmental protection, disc granulator is undoubtedly the ideal choice to balance quality and cost.