High-efficiency fermentation solutions in modern organic fertilizer production lines

In modern organic fertilizer production lines, the double screws compost turning machine, as a crucial piece of equipment, provides a professional and reliable solution for the aerobic fermentation stage. This equipment complements the common large wheel compost turning machine, together forming a complete material handling system.

As a key piece of equipment in organic fertilizer production lines, the double screws compost turning machine’s design is characterized by its unique double-helix structure. Two parallel spiral shafts work in tandem under power drive, enabling deep turning of the material within the fermentation tank. This design not only ensures thorough turning but also significantly improves processing efficiency, making it an important member of the modern organic fertilizer production equipment system.

In practical applications, the double screws compost turning machine works perfectly with trough fermentation processes. Its processing depth typically reaches over two meters, effectively breaking up the compacted layer formed during fermentation and ensuring uniform oxygen distribution in the material. Compared to large wheel compost turning machines, this equipment is more suitable for operation within fixed fermentation tanks, demonstrating unique environmental adaptability.

In the configuration of organic fertilizer production lines, the double screws compost turning machine and the large wheel compost turning machine each have their own advantages. Large wheel compost turning machines are typically suitable for windrow fermentation in open areas, while double screws compost turning machines excel in trough fermentation processes. This combination of equipment provides organic fertilizer producers with more flexible and diverse process options, meeting the needs of different site conditions and production scales.

With the continuous development of the organic fertilizer industry, double-helix compost turning technology is also constantly innovating. These technological advancements not only improve equipment performance but also drive the entire organic fertilizer production equipment system towards greater efficiency and intelligence.

The core contribution of cage crushers and double screws compost turning machines

The efficient operation of a bio-organic fertilizer production line relies on the precise coordination of bio-organic fertilizer equipment at each stage. Among these, cage crushers and double screws compost turning machines play indispensable roles in raw material pretreatment and fermentation, directly impacting the quality and production efficiency of the final product.

The cage crusher, as an important pretreatment equipment in bio-organic fertilizer production, primarily functions to refine raw material particles. Raw materials for bio-organic fertilizer production often include straw, poultry and livestock manure, and fallen leaves. These materials have uneven textures and contain large impurities. If directly introduced into the fermentation process, this can lead to insufficient fermentation and uneven nutrient distribution. The cage crusher can refine large materials into uniform particles, laying the foundation for subsequent fermentation and preventing damage to subsequent equipment caused by impurities.

After processing by the cage crusher, the raw materials enter the fermentation stage, where the double screws compost turning machine becomes a core piece of bio-organic fertilizer equipment. Fermentation is a critical step in bio-organic fertilizer production, requiring proper ventilation and uniform temperature to promote microbial activity and achieve complete composting. The double screws compost turning machine, with its unique double-screw structure, ensures stable overall fermentation temperature, significantly improving composting efficiency and shortening the fermentation cycle.

In a complete bio-organic fertilizer production line, the cage crusher and double screws compost turning machine are closely integrated and work collaboratively, forming the core force that ensures a smooth production process and high-quality products. This highlights the important supporting role of high-quality bio-organic fertilizer equipment in the development of the industry.

Why is the large wheel compost turning machine considered an “accelerator” for efficient organic fertilizer production?

In today’s pursuit of efficient production, the large wheel compost turning machine, with its superior performance, has become an “accelerator” for organic fertilizer manufacturers. Its efficiency advantages are reflected in multiple aspects.

In terms of processing capacity, the equipment utilizes a large wheel structure with a main wheel diameter of 5-10 meters, providing a wide turning coverage area in a single turn. It can process 100-200 tons of material per hour, 3-5 times the capacity of traditional windrow compost turning machines. For example, a base with an annual production capacity of 10,000 tons of organic fertilizer, which previously required multiple units, can now be met by a single large wheel compost turner, significantly improving production efficiency.

In terms of fermentation efficiency, it uses centrifugal force to thoroughly turn the material to a depth of 1.5-2 meters, evenly mixing the upper and lower layers of the material, and maintaining a temperature distribution difference of ≤2°C, thus avoiding uneven fermentation. The equipment also accelerates the contact between materials and air, regulates temperature and humidity, and shortens the fermentation cycle to 20-30 days, nearly half the time of traditional equipment.

Furthermore, the equipment boasts a high degree of automation, with an electronic control system and touchscreen operation, allowing one or two people to operate it, reducing labor input. For organic fertilizer companies seeking efficient production, the large wheel compost turning machine is undoubtedly an ideal choice for enhancing competitiveness.

Tracked design and efficient turning! Technical advantages of the windrow compost turning machine

The windrow compost turning machine’s widespread use in organic fertilizer production stems from the significant advantages offered by its unique technical design. The tracked design is a key advantage. Compared to traditional wheeled equipment, it effectively reduces ground pressure, typically to just 0.05-0.1 MPa. This allows for flexible maneuverability even on muddy, soft surfaces, or complex terrain with slopes up to 15°, eliminating the need for dedicated tracks. This significantly improves site utilization, exceeding that of trough-type compost turning machines by over 30%.

The machine also excels in turning performance. Its hydraulic arm allows for flexible adjustment of turning height and width, accommodating windrows ranging from 0.5-2.5 meters in height and 2-6 meters in width. A single unit can process 50-150 tons of material per hour, achieving an efficiency 1.5-2 times that of a single-screw compost turning machine. The turning teeth and spiral blades are forged from alloy steel. Combined with a bottom-up turning mechanism, this achieves a material turning rate of over 95%, preventing localized compaction and uneven fermentation. Material temperature deviation is kept within 3°C, ensuring stable fermentation quality.

Furthermore, the equipment’s electronic control system monitors operating parameters in real time. In the event of abnormal conditions such as overload or excessive hydraulic oil temperature, it automatically issues an alarm and shuts down the machine for protection, ensuring safe and efficient operation.

Large wheel compost turning machines: A super assistant for organic waste treatment

Large wheel compost turning machines make organic waste treatment more efficient and convenient, injecting a powerful impetus into environmental protection efforts and sparking curiosity about their many advantages.

1.Efficiently Breaks Agglomerated Materials

In organic waste treatment, materials such as livestock and poultry manure and straw often clump. The large wheel compost turning machine’s blades easily cut through these agglomerated materials. Whether it’s hard straw clumps or sticky livestock and poultry manure lumps, the blades quickly break them down into fine particles.

2.Deep Compost Turning Meets Diverse Needs

Large wheel compost turning machines typically reach a turning depth of 1.5 to 3 meters, making them suitable for organic waste fermentation projects of varying sizes and types. For large-scale organic waste treatment projects, they can penetrate deep into the bottom layer of the pile and turn the underlying material to the upper layer, ensuring sufficient oxygen supply and uniform fermentation throughout the entire pile. For small gardening farms and family farms, the turning depth can be flexibly adjusted based on actual needs to ensure effective fermentation.

3.Energy-saving Design Reduces Operating Costs

Some large-wheel wheel compost turning machines utilize advanced energy-saving features such as variable frequency drive. This design automatically adjusts the motor speed and power during operation based on the material’s condition and actual needs. When handling lighter, looser materials, the motor automatically reduces speed to reduce energy consumption; when handling harder, denser materials, the motor speed is increased appropriately to ensure effective turning.

The key factor in selecting a double screws compost turning machine is accurately matching your needs

For fertilizer companies, choosing the right double screws compost turning machine can increase fermentation production capacity by 30% while also reducing energy consumption and labor costs.

  1. Compatibility with Fermentation Tank Specifications

The operating width of the double screws compost turning machine must match the width of the fermentation tank (common widths are 3-6 meters), and the turning depth must match the tank depth. If the tank is too wide or too deep, the edge materials may not be turned properly.

  1. Matching Processing Capacity with Production Capacity

Select the equipment’s processing capacity based on the daily fermentation raw material volume (a single machine can process 50-200 tons per hour). Small and medium-sized companies can choose a small machine (50-100 tons/hour). Large-scale production lines require a large double screws compost turning machine, while also allowing for 10% redundancy to account for raw material fluctuations.

  1. Adaptability to Raw Material Characteristics

When processing livestock and poultry manure with high moisture content, choose equipment with spiral blades equipped with an anti-stick coating to prevent entanglement. When processing straw-like fiber materials, prefer models with a wide spiral blade spacing (15-20cm) to enhance material throwing and reduce clogging.

  1. Power and Energy Considerations

Preferably choose models with variable frequency motors, which can adjust the speed based on the moisture and viscosity of the raw material. Also consider the double screws compost turning machine’s travel system. Track-type models are suitable for fixed fermentation tanks, while crawler-type models are suitable for flexible adjustments to the fermentation area.

How should a windrow compost turner be adjusted for different organic fertilizer raw materials?

Organic fertilizer raw materials vary greatly, such as straw, chicken manure, mushroom residue, and distiller’s grains, and their properties can vary greatly. When using a windrow compost turner, a few adjustments can ensure smoother fermentation.

If you’re turning dry straw, it’s fluffy and porous, but it’s prone to “lifting.” The blades of a windrow compost turner tend to only scrape the surface, failing to thoroughly turn the bottom. In this case, you can steepen the blade angle to allow it to penetrate deeper into the pile. At the same time, slow down the compost turner’s speed to 2-3 kilometers per hour. This ensures that both the top and bottom of the straw pile are turned loosely, breaking up any large clumps and facilitating subsequent fermentation.

If you’re turning wet, sticky raw materials like chicken manure and pig manure, they tend to clump and stick to the blades, and the pile may become compacted after turning. At this time, the blade angle should be adjusted to a gentler angle to reduce sticking, and the forward speed can be increased slightly to allow the turned manure pile to quickly disperse and breathe. Additionally, before turning the pile, sprinkle some dry sawdust on the surface. This will automatically mix the material as the compost turner turns, reducing moisture and preventing clumping.

When turning fine ingredients like mushroom residue and distiller’s grains, the main concern is “missing” them. If the pile is too loose, they can easily leak through the gaps between the blades. By reducing the blade spacing on the windrow compost turner and maintaining a moderate speed, the fine ingredients can be turned over, ensuring even mixing and accelerating fermentation by about 10 days.

Key points for retrofitting organic fertilizer production lines under environmental compliance requirements

With increasingly stringent environmental protection policies, environmental retrofitting of organic fertilizer production lines has become an industry imperative, focusing on the treatment of “three wastes” and compliance upgrades.

For waste gas treatment, organic fertilizer production lines must be equipped with sealed fermentation chambers and ammonia collection systems. Biofilter technology is used to control ammonia concentrations generated during the fermentation process to within standards. Some areas also require VOC monitoring equipment to ensure real-time upload of emission data.

For wastewater treatment, production lines must establish a recycling system to sediment and filter wash water and condensate before reusing them for raw material moisture conditioning, achieving zero wastewater discharge.

For solid waste treatment, optimized screening processes are employed to re-crush fermentation residues before mixing them back into fermentation, achieving full solid waste utilization.

Furthermore, the environmental impact assessment process imposes stricter requirements on production line site selection and capacity planning, such as requiring them to be at least 500 meters away from residential areas and designing production capacity to match the regional environmental carrying capacity. Although these transformations increase initial investment (usually the transformation cost of a single production line accounts for about 15%-20% of the total investment), the energy consumption of the organic fertilizer production line can be reduced by 12%-18% after the transformation.

Key technology paths for low-energy retrofitting of NPK fertilizer production lines

To achieve the goal of efficient fertilizer production, low-energy retrofitting of NPK fertilizer production lines has become an industry imperative, with key improvements focused on optimizing technologies in high-energy-consuming processes.

In the raw material pretreatment stage, a waste heat recovery system is used to redirect 80-120°C exhaust gases generated during the drying process into the pulverization process, reducing energy consumption by 18%-22% and simultaneously reducing thermal emissions.

In the granulation process, a core energy consumer, traditional steam heating is gradually being replaced by electromagnetic heating, increasing heating speed by 50% and boosting thermal efficiency from 65% to over 90%. This reduces energy consumption per ton of product by approximately 80 kWh.

A closed-loop cooling system is introduced in the cooling process, increasing water reuse from 30% to 95% while minimizing the impact of circulating water on the surrounding environment.

In addition, the NPK fertilizer production line has achieved refined management and control through motor frequency conversion and an intelligent energy consumption monitoring platform. This platform monitors power changes across each device in real time, allowing for timely adjustment of operating parameters and avoiding idle energy consumption. Data shows that after systematic low-energy consumption upgrades, the NPK fertilizer production line can reduce overall energy consumption per ton of NPK fertilizer by 25%-30%, achieving both environmental and economic benefits.

Why do horizontal crushers require special adaptations for bio-fertilizer production?

The core difference between bio-fertilizer production and conventional organic fertilizer and compound fertilizer production lies in the need to preserve the activity of the inoculant. Furthermore, the raw materials often consist of specialized materials such as fungus residue, traditional Chinese medicine residue, and fermented straw. This places special demands on grinding equipment: low temperature, pollution prevention, and precise particle size. Through targeted modifications, horizontal crushers have become the ideal choice for bio-fertilizer production.

1.Low-temperature crushing preserves inoculant activity

The functional bacteria in bio-fertilizer (such as Bacillus subtilis and phosphate-solubilizing bacteria) are not tolerant to high temperatures. Excessive frictional heat (above 45℃) generated during the grinding process can inactivate the bacteria. High-quality horizontal crushers optimize the impeller speed (to avoid excessive friction) and some are equipped with a “water-cooling jacket” to circulate cold water to remove heat from the chamber walls, maximizing inoculant activity.

2.Anti-residue design prevents cross-contamination

Bio-fertilizer production often requires switching between different inoculant formulations. If residual material from previous batches remains in the equipment, bacterial strains can mix. The horizontal crusher’s “fully open cleaning structure” solves this problem. The grinding chamber door can be fully opened, and the smooth, corner-free interior allows for quick cleaning without disassembling core components, reducing the risk of cross-contamination.

3.Precise Particle Size for Microbial Agent Mixing

Bio-fertilizer production requires uniform particle size (typically 1-3mm) after grinding. Uneven particle size results in incomplete mixing of the microbial agent and raw material, impacting fertilizer efficiency. The horizontal crusher can precisely control particle size deviation within ±0.5mm, providing a high-quality raw material foundation for subsequent microbial agent inoculation and mixing.