Turning waste into treasure: A practical guide to making granules from mushroom and herbal medicine residues

With the widespread adoption of environmental protection concepts, mushroom mycelium residue and traditional Chinese medicine residue can be transformed into practical granules for use in agricultural fertilization, biofuels, and other fields. The following are the key steps for efficient granulation.

Raw material pretreatment is fundamental. Fresh mushroom residue has a water content exceeding 70%, so it needs to be air-dried or oven-dried to 30%-40%, with frequent turning to prevent mold. Herbal medicine residue should be screened to remove impurities; hard lumps of roots and stems need to be crushed to a particle size of less than 5 mm using a fertilizer crusher. The two are mixed in a ratio of 3:1 or 2:1 (increasing the proportion of mushroom residue for fertilization, and increasing the proportion of herbal medicine residue for fuel), and a small amount of straw powder or bran is added to adjust the hardness and improve granulation stability.

The granulation process requires attention to operational details. Select a flat die pelleting machine or ring die pelleting machine, and preheat the mold to 60-80℃ before starting to prevent sticking. Feed the material at a uniform speed; if the granules are loose and easily broken, spray a small amount of water (not exceeding 2% of the total raw material); if the hardness is too high, reduce the moisture content. Regularly check the particle diameter and adjust the mold aperture to obtain standard 5-8 mm granules.

Finished product processing and application are also crucial. Newly made granules need to be spread out and cooled to room temperature, and then screened with a fertilizer screener machine to remove broken pieces (broken pieces can be returned to the machine for reprocessing). After cooling, pack them in sealed bags and store them in a dry and ventilated place; the shelf life is 6-8 months. In agriculture, they can be used directly as organic fertilizer to improve soil; they can also be used as feed additives for livestock and poultry (provided the herbal medicine residue is tested for harmful residues); and they can also be used as fuel, burning efficiently with low pollution.

This method not only achieves the resource utilization of waste but also reduces production costs. Whether for farmers or small processing plants, this method can be tried according to actual needs, truly achieving “turning waste into treasure.”

Double roller press granulator: Granulation equipment for NPK fertilizer production lines

NPK compound fertilizers, due to their balanced nutrients and suitability for various crops, have become the mainstream fertilizer in agricultural production. The core efficiency of an NPK fertilizer production line largely depends on the selection of the fertilizer granulator. Among them, the double roller press granulator, with its unique advantages, has become the preferred granulation equipment for many NPK production lines, helping to achieve efficient and low-cost granulation.

In an NPK fertilizer production line, the double roller press granulator is at the core. Pre-treated nitrogen, phosphorus, and potassium raw materials and fillers are uniformly mixed by a fertilizer mixer machine and then fed into this equipment. The pressure generated by the relative extrusion of the double rollers directly forms the material into granules, without the need for additional water or binders. This dry granulation method eliminates subsequent drying and cooling steps, significantly simplifying the NPK production line process and reducing energy consumption and production costs.

As one of the mainstream fertilizer granulators, the double roller press granulator has significant advantages in NPK production. It has strong adaptability to raw material moisture content, capable of processing materials with a moisture content of 8%-15%, avoiding the clumping problems that often occur in wet granulation; it has a high granulation rate, and the granules have high strength and are not easily broken, meeting the needs of NPK compound fertilizer storage, transportation, and mechanized fertilization. In addition, the equipment has a simple structure and is easy to operate, and can be easily connected with supporting equipment such as fertilizer screener machines and packaging machines, adapting to NPK fertilizer production lines of different scales.

Whether for small and medium-sized NPK production projects or large-scale production lines, the double roller press granulator can adapt to the needs with its flexible capacity adjustment capabilities. It not only improves the production efficiency of NPK fertilizers but also ensures the quality stability of the finished fertilizer, becoming an important equipment support for promoting the high-quality development of the NPK compound fertilizer industry.

A powerful and efficient granulator for multiple applications: The ideal choice for organic fertilizer production

In the field of pellet processing, disc granulators have become popular equipment due to their superior performance, especially in organic fertilizer production. They are a core component of organic fertilizer disc granulation production lines, providing efficient solutions for pellet processing across multiple industries.

This organic fertilizer disc granulator boasts significant advantages, achieving a pelleting rate exceeding 95%. Its main gear undergoes high-frequency quenching treatment, effectively doubling its service life and significantly reducing maintenance costs. Its core component is an adjustable tilting disc with an adjustable tilt angle (30°-60°) and rotation speed (5-30 rpm). The disc’s inner wall is lined with wear-resistant material, allowing it to adapt to materials with different properties—from livestock manure and fermented straw in organic fertilizer production to iron ore powder in the metallurgical industry and cement raw materials in the building materials industry—all can be efficiently converted into pellets.

In the organic fertilizer production process, its operating logic is clear and efficient. First, the organic raw materials are pulverized to 0.1-1mm using a fertilizer crusher. After thorough mixing in a fertilizer mixer machine, they are evenly fed into a disc by a feeding device. Simultaneously, a water spraying device precisely controls the moisture content, maintaining the material’s moisture content at 10%-20%. As the disc rotates, the material is rolled into spheres under centrifugal force and friction. Particles with a sphericity exceeding 80% are screened by a fertilizer screener machine. Qualified products proceed to the subsequent drying stage, while unqualified particles are returned for reprocessing, ensuring stable finished product quality.

Besides organic fertilizer, it is also widely used in the metallurgical, building materials, and chemical industries: in metallurgy, it is used for granulation of mineral powder to facilitate subsequent sintering and smelting; in building materials, it is used to produce cement raw material granules to improve cement quality; and in chemicals, it is used for granulation of catalysts and pigments to enhance product flowability.

A path to quality improvement and efficiency for small and medium-sized fertilizer enterprises

For small and medium-sized fertilizer enterprises, the performance of NPK fertilizer production lines directly determines their market competitiveness. Choosing the right compound fertilizer production equipment and optimizing production processes are crucial for reducing costs and increasing efficiency. Many companies have achieved a transformation from “extensive production” to “precise and efficient production” by upgrading their production lines.

The core of upgrading production lines for small and medium-sized fertilizer enterprises is to balance practicality and cost-effectiveness. A basic NPK fertilizer production line requires essential equipment: in the raw material processing stage, a fertilizer crusher can crush large pieces of phosphate rock, potash fertilizer, and other raw materials to a suitable particle size, and a precise batching system can prevent deviations in nutrient ratios; a fertilizer mixer machine is used in the mixing stage to ensure uniform mixing of nitrogen, phosphorus, potassium, and auxiliary materials, laying the foundation for subsequent granulation. A fertilizer granulator can be selected based on production capacity. Subsequent drying, cooling, and coating machines, and fertilizer screener machines can screen out qualified granules, and then an automatic packaging machine completes the packaging process, significantly reducing labor costs.

Process optimization is equally indispensable. A high-quality NPK fertilizer granulation process can improve the finished product qualification rate. Automated compound fertilizer production is now mainstream; a simple PLC control system can monitor parameters such as drying temperature and granulation speed in real time, reducing human error.

Small and medium-sized fertilizer enterprises do not need to blindly pursue high-end equipment; they should choose a suitable solution based on their production capacity and product positioning. Prioritize manufacturers with comprehensive after-sales service to ensure that equipment problems can be resolved promptly.

From equipment to process, how to choose the right NPK fertilizer production line?

In the process of agricultural modernization, the demand for high-quality compound fertilizers has surged, making NPK fertilizer production lines core equipment for fertilizer companies expanding production. However, faced with a variety of equipment and processes, choosing a production line that suits their specific needs is a challenge for many industry professionals.

First, let’s look at the core equipment configuration. A complete NPK fertilizer production line needs to cover key stages such as raw material processing, mixing, granulation, drying, and cooling. In the raw material processing stage, a fertilizer crusher can crush large raw materials to a suitable particle size, and with a precise batching system, the proportion of nitrogen, phosphorus, and potassium components can be strictly controlled; for the mixing stage, a fertilizer mixer machine is recommended, and a double shaft paddle mixer can achieve a raw material mixing uniformity of over 95%; granulation is the core process, with disc granulators suitable for small and medium-sized capacities, while double roller press granulators are suitable for high-hardness granule requirements, and companies can choose according to their needs. Subsequent drying, cooling, and coating machines, along with fertilizer screener machines, ensure that the finished granules are uniform and have a qualified moisture content, and finally, automatic packaging is achieved through packaging machines, improving production efficiency.

At the process level, automation is key. A high-quality NPK fertilizer granulation process requires a PLC control system for full monitoring, precisely adjusting parameters from raw material proportioning to drying temperature, ensuring stable nutrient content in the finished product and reducing energy consumption. Choosing the right NPK fertilizer production line is not just about purchasing a set of equipment, but also laying the foundation for the long-term development of the enterprise. Combining capacity, finished product requirements, and manufacturer services will allow the production line to truly become a profit engine.

Fertilizer screener machines: A key step for high-quality organic fertilizer production

In organic fertilizer production, screening is a critical step to ensure product quality. Fertilizer screener machines precisely separate raw materials and finished products. They remove impurities, control particle size, and directly impact the fertilizer’s uniformity, application effectiveness, and market competitiveness.

1.Why Screening is Key for High-Quality Organic Fertilizer
Remove Impurities: Things like undecomposed coarse fibers, stones, or plastic debris harm fertilizer safety and effectiveness. Screeners efficiently separate these foreign objects.
Grade Particles: Different crops and application methods (like broadcast spreading or machine application) need different particle sizes. Screening ensures uniform particle size, improving usability.
Boost Market Appeal: Finely screened organic fertilizer has a neat, uniform appearance, making it more marketable and increasing its value.
2.Common Organic Fertilizer Screening Equipment and Features
Rotary Screener machine: Good for high-moisture material. Handles large volumes. Allows multi-stage screening.
Vibration Screener machine: High screening precision. Best for fine grading of dry particles.

3.Key Points for Optimizing Screening
Choose the Right Screen Mesh Size: Match the mesh size (usually 2-6mm) to the fertilizer’s use (like base fertilizer or top dressing).
Control Feed Rate: Feed material evenly to avoid blockages and boost efficiency.
Regular Maintenance and Cleaning: Prevents material buildup on screens, which affects grading accuracy.

Precise screening – from raw material cleaning to finished product grading – significantly improves fertilizer efficiency, suitability for machinery, and commercial value.