Chain crusher: Suitable for processing a variety of fertilizer raw materials

In the fertilizer industry, raw materials used for different fertilizer types vary significantly. Organic fertilizers require the processing of straw and fermented livestock and poultry manure, while compound fertilizers often involve hard particles such as phosphate rock and potassium chloride. Chain crushers, with their versatile adaptability, can easily handle the crushing needs of these diverse raw materials.

For fibrous raw materials such as straw and rice husks, common in organic fertilizer production, the chain of a chain crusher uses high-speed impact to sever the fibers, eliminating the “fiber entanglement” problem common in traditional hammer mills. The resulting pulverized material is loose and easy to mix with other raw materials for fermentation. For cake-based raw materials (such as soybean meal and rapeseed meal), the chain’s shear force effectively breaks up lumps and produces uniform crushed particles, eliminating excess powder and reducing raw material waste.

Even for hard mineral raw materials used in compound fertilizer production, chain crushers with high-strength alloy chains can achieve crushing through continuous impact, and the equipment’s lining is made of wear-resistant material, extending its service life.

In addition, it has a higher tolerance for the moisture content of raw materials. Wet materials with a moisture content of about 20% can be directly crushed without additional drying, which greatly simplifies the organic fertilizer production process and reduces the company’s initial investment.

Choosing the right chain crusher for the fertilizer industry

For fertilizer manufacturers, choosing the right chain crusher not only reduces production costs but also ensures stable production line operation. Many companies often make the mistake of focusing solely on throughput when selecting a grinder.
First, consider compatibility with the raw material characteristics. If primarily processing lightweight fiber materials like straw and rice stalks, focus on the density and toughness of the equipment chain to prevent fiber entanglement. If crushing hard, cake-like materials like soybean meal and cottonseed meal, emphasize chain material strength to ensure impact resistance.
Second, consider whether the processing capacity matches the production line. Calculate the equipment’s hourly throughput based on your daily production capacity, allowing for a 10%-15% margin to prevent overload due to feed rate fluctuations.

Finally, consider controllable crushing particle size. Different fertilizer products have different particle size requirements. For example, granular fertilizers require crushing to 2-5mm, while powdered fertilizers require finer particles. When selecting a chain crusher, confirm whether the equipment can adjust the particle size by adjusting the screen aperture and drum speed.
Finally, consider energy consumption and environmental protection. Prioritize equipment that matches motor power and processing capacity to avoid energy waste caused by a “big horse pulling a small cart.” Also, focus on the chain crusher sealing performance to minimize dust spillage during the crushing process and meet environmental protection requirements in the fertilizer industry.

Technical adaptation strategies for organic fertilizer production lines in low-temperature environments

The impact of low temperatures in northern winter on organic fertilizer fermentation efficiency has necessitated low-temperature adaptation of organic fertilizer production lines. Key measures focus on maintaining fermentation temperature and raw material pretreatment.

In terms of bacterial strain selection, production lines must utilize low-temperature-tolerant composite inoculants to ensure viability at temperatures between 5-15°C (with a viable bacterial count retention rate exceeding 85%), shortening fermentation start-up time to within 24 hours.

In terms of workshop design, insulation and a photovoltaic-assisted heating system are required to maintain the fermentation room temperature above 10°C through solar heating. Some organic fertilizer production lines also utilize closed fermentation chambers, utilizing bioheat generated during the fermentation process to maintain a constant internal temperature (temperature fluctuations within ±3°C).

In raw material pretreatment, to address the difficulty of raw materials such as straw degrading at low temperatures, production lines incorporate a pre-crushing step (crushing the raw materials to 0.5-1 cm) and use hot water humidity control (controlled at 30-40°C) to raise the initial raw material temperature and ensure fermentation efficiency.

These adaptation measures have increased the capacity utilization rate of organic fertilizer production lines in northern winter from the original 50% to over 80%, and the organic matter content of finished fertilizers has stabilized at over 55%, effectively ensuring the supply of fertilizers for agricultural production in northern winter.

Moisture proofing adaptation techniques for organic fertilizer production lines

During the rainy season, humidity is high, and organic fertilizer raw materials easily absorb moisture and clump together. This can lead to production line blockages and slow fermentation if not carefully considered. In fact, smooth production can be achieved by making three moisture-proof adjustments to the organic fertilizer production line.
Include a moisture control step in the pretreatment process. Install a small drying device before the pulverizer to reduce the moisture content of raw materials such as straw and manure from over 65% to 55%-60%, preventing wet materials from sticking to the pulverizer blades.
Add a moisture detector to the mixer outlet. If the raw materials are too wet, it will automatically prompt the addition of dry sawdust, eliminating the need for empirical judgment and reducing the risk of subsequent granulation blockages.

The fermentation process requires both rain protection and ventilation. Build a simple canopy over the fermentation pile to prevent rain from directly falling on it. After each turning, place a layer of dry straw on the surface of the pile. This absorbs moisture and allows for ventilation inside the pile, preventing stagnation. If the humidity in your workshop exceeds 80%, install several industrial fans in the fermentation area to improve air circulation and prevent the fermentation cycle from being extended during the rainy season.
The pelletizing process requires timely cleaning. During the rainy season, raw materials are prone to sticking to the pelletizer’s ring die. Every two hours of production, stop the fertilizer granulator and use a special scraper to clean the sticky material from the die holes. Don’t wait until it accumulates.
The conveyor belt at the discharge port can be covered with an anti-stick mat to prevent pellets from sticking, reducing cleaning time. With these adjustments, your organic fertilizer production line can operate as efficiently as normal during the rainy season, eliminating the need to worry about wet raw materials and slow fermentation.

How to prevent blockages in new type organic fertilizer granulators?

Many people occasionally encounter blockages when using new type organic fertilizer granulators (raw material gets stuck in the granulation chamber, preventing pellets from coming out). However, if you take three steps in advance, this problem is virtually eliminated.

First, avoid any hard lumps in the raw material. Whether it’s manure or straw, lumps may form after fermentation. Before feeding, be sure to use a crusher to break up any lumps. Keep lumps no larger than 1 cm, otherwise they will get stuck in the die holes of the new organic fertilizer granulator. Accumulating these lumps will cause a blockage.

Second, control the moisture content of the raw material. Although new type organic fertilizer granulators are moisture-resistant, raw material that is too moist (over 65%) will stick to the granulation chamber, while too dry (less than 45%) will produce fine powder and clog the screen. Before each feeding, grab a handful of raw material and form a ball that breaks apart easily. This will ensure the raw material flows smoothly through the granulation chamber without blockage.

Third, perform a component inspection every day before starting the machine. Check the pressure roller of the new type organic fertilizer granulator to see if it’s stuck and the scraper at the discharge port to see if it’s blunt. If the roller can’t turn or the scraper is blunt, the pellets won’t come out and the machine will jam. Simply turn the roller manually and check the scraper to see if it’s sharp. If there’s any problem, adjust it immediately to avoid jams.

How do new type organic fertilizer granulators reduce dust and noise?

Organic fertilizer plants now have to meet environmental standards, and dust and noise are prone to complaints. New type organic fertilizer granulators offer more comprehensive dust and noise reduction measures than traditional models, eliminating the need for extensive additional environmental protection equipment.
Let’s first discuss dust reduction. Both the feed and discharge ports feature dust-proof designs. The feed port features a soft dust cover that fits over the conveyor belt outlet, preventing dust from escaping as the material falls. The discharge port incorporates a “deflector + atomizing nozzle” system. As the granules emerge, the deflector guides them in a direction, while the atomizing nozzle sprays a small amount of water (just enough to wet the dust without affecting the particles) to suppress any raised fines. This reduces dust concentration in the workshop by over 60%, eliminating the need for separate, large-scale dust removal equipment.

Next, consider noise reduction. The new type organic fertilizer granulator features a soundproofing pad between the motor and the granulation chamber, resulting in a 10-15 decibel reduction in operating noise compared to traditional machines. For example, while traditional machines typically make a tractor-like sound, the new type organic fertilizer granulator’s operation resembles a washing machine spinning, allowing for normal conversation in the workshop without earplugs. Furthermore, its rollers and ring die work together more smoothly, eliminating the sharp noises caused by friction and preventing disturbance to nearby residents.

Even in small spaces! Flexible placement tips for windrow compost turning machines

Many small organic fertilizer plants worry about “small space and compost turning machine maneuvers.” In fact, as long as you master placement and routing techniques, a windrow compost turning machine can operate smoothly even in a space as small as 100 square meters.

First, the pile must be placed smoothly. Avoid stacking the pile in small, scattered, round piles. Instead, create long, narrow piles—for example, a 1-meter-wide, 1.2-meter-high, and 5-meter-long strip. This allows the compost turner to move along the strip in a straight line, eliminating the need for frequent turns. This saves space and ensures thorough turning. Leave a 1.5-meter-wide aisle between two long piles—just enough for the compost turner to move back and forth without hitting the adjacent piles.

Second, turning techniques are crucial. If the space is truly limited and the windrow compost turning machine needs to turn, don’t do it directly on the pile; instead, move it into the aisle. First, raise the compost turner’s blades and move it to the center of the aisle. Then, slowly turn (keeping the turning radius at least 2 meters) to avoid the tracks pressing into the pile and causing the material to clump.

Also, you can turn the compost in layers. If the pile is high (over 1.5 meters) and the site is not wide enough, the windrow compost turning machine can turn the material on the top layer first, loosening it, and then lower the blades to turn the lower layers. This allows for thorough turning without breaking up the pile.

How can you prevent organic fertilizer from “fermenting and spoiling” when using a windrow compost turner?

Many people use windrow compost turners, thinking that “just turning it is enough.” In reality, they fail to pay attention to details, which can easily lead to spoiled compost (turning it black, smelling, or not fermenting thoroughly).
First, adjust the frequency of turning based on the compost temperature. If the compost temperature is below 45°C, microbial activity is low, so turning it every two days is sufficient. Avoid frequent turning. If the compost temperature exceeds 65°C, turn it once a day. Use a windrow compost turner to move the hot material to the surface to dissipate heat and prevent beneficial bacteria from being killed. This will keep the compost temperature stable at 50-60°C, ensuring optimal fermentation.

Second, check the moisture content of the compost when turning it. If the turned material sticks to the blades and cannot be shaken off, it is too wet. Sprinkle a layer of dry straw on the compost before turning it again. The compost turner will automatically mix it during turning. If the material breaks down and becomes dusty when turned, it is too dry. Spray water on it while turning it, and control the moisture content so that it can be clumped when held in the hand but falls apart when released.
Third, don’t forget to turn the “edge piles.” Many people only turn the large pile in the center, neglecting the smaller piles on the sides, which can cause them to under-ferment. A windrow compost turner can move in a “U-shaped” pattern, turning the center first, then moving around to the edges, bringing the material toward the center, ensuring every pile is turned.

Energy consumption optimization for BB fertilizer mixers: Cost reduction from adjustment to operational details

In BB fertilizer production, BB fertilizer mixers account for 20%-30% of total energy consumption. Through equipment adjustment and operational optimization, energy consumption can be reduced by 15%-20% without compromising mixing quality.

For BB fertilizer mixer upgrades, variable-speed motors are preferred over traditional fixed-speed motors. The speed is adjusted according to the mixing stage: in the initial feeding phase (when the raw materials have not yet filled the barrel), a low speed of 15 rpm is used to avoid idling energy waste; in the middle mixing phase (when the raw materials are fully tumbling), the speed is increased to 22-25 rpm for efficient mixing; and in the later stages (when the mixing is nearly uniform), the speed is reduced to 18 rpm to reduce energy consumption from excessive mixing. Furthermore, adjusting the mixer’s blade angle from 45° to 30° (for granular raw materials) reduces blade resistance, reduces motor load by 10%-12%, and reduces energy consumption accordingly.

There are three key aspects to optimizing operational details: First, “full load but not overload”—feeding the equipment at 75% of its rated capacity to avoid wasted idling caused by underfeeding (<60%) or motor overload and energy consumption caused by overfeeding (>90%). Second, “centralized batch production”—concentrating fertilizer production of the same formula within 2-3 hours to reduce energy consumption from frequent equipment starts and stops. Third, “reasonable cleaning cycles”—changing “clean every batch” to “clean every three batches”—reduces the equipment’s idle time during cleaning. Furthermore, an anti-stick coating on the drum wall ensures that residue remains within standards.

In addition, regularly inspect the wear of the BB fertilizer mixer’s blades. If the blade edge is worn by more than 1/4, repair or replace it promptly to avoid extended mixing time due to insufficient blade power.

How can we ensure that the effects of BB fertilizer containing functional additives are not lost through a blender?

When adding functional ingredients such as slow-release agents, biological agents, and trace elements to BB fertilizer, the BB fertilizer blender requires special adjustments to prevent the additive effects from being lost or unevenly distributed during the blending process.
Biological agents (such as Bacillus subtilis) are sensitive to high temperatures and easily inactivated. Therefore, two key controls must be implemented during blending: first, the blending temperature. By installing a cooling jacket on the BB fertilizer blender barrel, the chamber temperature can be kept below 35°C to prevent frictional heating from the blades, which could reduce the activity of the agent. Second, the mixing order: pre-mix the agent with 10 times the amount of carrier (such as humus powder) to form a “mother powder.” This should then be added after the blender has been running for 5 minutes. This minimizes direct friction between the agent and other ingredients and ensures a viable bacterial count retention rate exceeding 90%.

If adding a slow-release agent, to avoid damaging the coating during mixing, use a “low-shear” impeller (with blunted blade edges), reduce the speed to 15-18 rpm, and control the mixing time to ≤8 minutes. This prevents the slow-release agent particles from excessively colliding and causing the coating to crack, thereby losing its slow-release effect.
For trace elements, they should first be crushed to a size of 100 mesh or larger, pre-diluted with five times the amount of powdered fertilizer (such as monoammonium phosphate powder), and then added to the BB fertilizer blender using a “multi-point feeding” method to ensure even distribution of the trace elements and avoid localized high concentrations that could cause fertilizer damage to the crop.