Ring die granulator: What is the core mechanism of pellet formation?

In fertilizer granulation production, the ring die granulator is a key piece of equipment for achieving “powdered raw materials → uniform granules.” It is particularly suitable for a variety of fertilizer types, including organic fertilizers, compound fertilizers, and biofertilizers. The key to its granule formation lies in the synergistic effect of the “ring die + press roller” system, as well as precise adaptation to the raw material characteristics.

The core working components of the ring die granulator are a ring die with densely packed holes (ring die) and two to three press rollers within it. When the machine is started, pre-treated (mixed and conditioned) fertilizer raw materials (usually with a moisture content of 15%-25%) are fed into the extrusion chamber between the ring die and the press rollers. The motor drives the ring die at high speed, while the press rollers follow in the opposite direction. Friction forces press the raw materials tightly against the inner wall of the ring die.

As the ring die continues to rotate, the raw materials are forcibly squeezed into the small holes of the ring die, where they undergo a process of “extrusion → shaping → solidification.” The shape of the small holes (circular, cylindrical, or oblate) determines the appearance of the pellets, while the length-to-diameter ratio of the holes (also known as the “compression ratio”) influences pellet hardness.

Finally, the formed pellets are cut by a scraper on the outside of the ring die, forming uniform fertilizer granules. The entire process achieves “continuous feeding and continuous granulation,” adapting to the mass production needs of organic fertilizer production lines.

How can a horizontal crusher “flexibly adjust” to address fluctuations in fertilizer raw materials?

Raw material fluctuations are common in fertilizer production. For example, the raw material for organic fertilizer may switch from “dry straw” to “wet bacterial residue,” or the raw material for compound fertilizer may change from “phosphate rock powder” to “potassium sulfate granules.” These fluctuations in raw material hardness, moisture content, and viscosity can lead to decreased pulverization efficiency and substandard particle size if the horizontal crusher cannot flexibly adjust.

  1. Speed Adjustment to Adapt to Hardness Changes

When switching from “soft fibrous materials” (such as dry straw, which has low hardness) to “hard mineral materials” (such as phosphate rock, which has high hardness), the variable frequency motor can adjust the impeller speed to avoid excessive pulverization and dust generation. For hard materials, high speeds enhance impact and shear forces, ensuring effective pulverization. This allows adaptation to different hardness levels without changing equipment.

  1. Gap Adjustment to Address Viscosity Differences

When processing high-viscosity raw materials (such as wet mushroom residue with a moisture content of 28%), a small gap between the impeller and the chamber wall can easily cause the material to stick to the wall. When processing low-viscosity raw materials (such as dry cake), a large gap will reduce grinding efficiency. A horizontal crusher can adapt to different viscosities, reducing sticking and ineffective grinding.

  1. Screen Replacement to Adapt to Particle Size Requirements

Different fertilizer products require different particle sizes (organic-inorganic compound fertilizers require 3-5mm, powdered fertilizers require 0.8-1.2mm), and fluctuations in raw material quality may make the original screen size unsuitable. A horizontal crusher can quickly change screens with different apertures (commonly 0.5-10mm), flexibly meeting the particle size requirements of different raw materials and products.

How to choose the right raw materials to optimize the production effect of organic fertilizer products ?

Organic fertilizer is an important fertilizer source in modern agricultural production, and its production effect is directly related to soil fertility and crop yield. Selecting the right raw materials and optimizing the production process is the key to improving the quality of organic fertilizer.
 
First of all, the raw material selection of organic fertilizer should be based on the organic matter content, nutrient composition and microbial activity of the raw material. Common high-quality raw materials include animal manure, municipal sludge, domestic waste, sugar filter mud, wine lees, bean residue, straw, etc. After proper treatment and fermentation, these raw materials can be converted into nutrient-rich organic fertilizers.

In an organic Fertilizer Production Line, the Fertilizer Granulating Production Line is a key link in the formation of granular fertilizer. The granulation process not only improves the physical properties of fertilizer, but also helps to improve the application efficiency of fertilizer. For example,   Fertilizer Granules Compaction Machine and Flat-Die Pellet Machine are commonly used granulation machines, which make raw materials into particles by extrusion, and these particles have good forming effect and high strength.

In order to further improve the quality of organic fertilizer, Windrow Compost Turning Machine plays an important role in the fermentation process. This equipment improves the fermentation efficiency by turning the compost, improving the ventilation conditions and promoting the rapid decomposition of organic materials.
 
In the production of organic fertilizers, the use of fertilizer shredders (such as Cage Crusher) is also essential. The pulverizer crushes the bulk organic material into the right size to facilitate subsequent mixing and granulation processes.
 
Finally, in order to ensure the uniformity of organic fertilizers and improve production efficiency, fertilizer mixers (such as the Horizontal Ribbon Mixer) and fertilizer Screening machines (such as the Rotary Screening Machine) are also indispensable equipment on the production line. Mixers are used for uniform mixing of raw materials, while sifters are used to separate fertilizer particles of different sizes to ensure consistency and quality of the final product.
Through scientific and reasonable raw material selection and production process optimization, it can not only improve the quality of organic fertilizer, but also contribute to the sustainable development of agriculture.

Horizontal crusher: How to ensure continuous operation of organic fertilizer production lines?

In fertilizer production, production line interruptions are one of the most troublesome issues for companies. Frequent downtime of the pulverizing equipment causes delays in upstream and downstream processes (such as raw material pretreatment and subsequent granulation), directly reducing daily production capacity. However, the horizontal crusher, with its targeted design, serves as a “stabilizer” for ensuring continuous production line operation. Its core advantages are concentrated in three aspects.

1. Anti-clogging Design Reduces Downtime for Cleaning

To address the problem of caking and clogging of fertilizer raw materials (especially high-humidity fermented materials and fibrous materials), high-quality horizontal crushers feature a “tilted discharge chamber + self-cleaning impeller” structure. The tilted chamber accelerates material discharge and prevents accumulation. Elastic scrapers at the end of the impellers scrape residual material off the chamber walls as they rotate, eliminating the need for frequent downtime for cleaning.

2. Feeding and Production Line Compatibility

It can be used with automatic feeding devices (such as belt conveyors and screw feeders). Frequency conversion controls the feed speed to match the raw material conveying and pelletizing process, preventing “overfeeding and machine blockage” or “overfeeding and idling.”

3. Durability Reduces Failure Frequency

To address the abrasive nature of fertilizer raw materials (such as minerals), the chamber wall is constructed of a wear-resistant alloy, extending its average service life by two times that of ordinary materials. The device also features an overload protection device. If the chamber is overloaded, the motor automatically shuts off, preventing extended downtime due to component damage. This design ensures “less downtime, more operation” for the organic fertilizer production line.

Chain crusher: Suitable for processing a variety of fertilizer raw materials

In the fertilizer industry, raw materials used for different fertilizer types vary significantly. Organic fertilizers require the processing of straw and fermented livestock and poultry manure, while compound fertilizers often involve hard particles such as phosphate rock and potassium chloride. Chain crushers, with their versatile adaptability, can easily handle the crushing needs of these diverse raw materials.

For fibrous raw materials such as straw and rice husks, common in organic fertilizer production, the chain of a chain crusher uses high-speed impact to sever the fibers, eliminating the “fiber entanglement” problem common in traditional hammer mills. The resulting pulverized material is loose and easy to mix with other raw materials for fermentation. For cake-based raw materials (such as soybean meal and rapeseed meal), the chain’s shear force effectively breaks up lumps and produces uniform crushed particles, eliminating excess powder and reducing raw material waste.

Even for hard mineral raw materials used in compound fertilizer production, chain crushers with high-strength alloy chains can achieve crushing through continuous impact, and the equipment’s lining is made of wear-resistant material, extending its service life.

In addition, it has a higher tolerance for the moisture content of raw materials. Wet materials with a moisture content of about 20% can be directly crushed without additional drying, which greatly simplifies the organic fertilizer production process and reduces the company’s initial investment.

What should be noted when using organic fertilizer fermentation equipment?

Organic fertilizer is an indispensable part of agricultural production, and every link of its production process is crucial. The correct use of organic fertilizer fermentation equipment can not only improve the quality and efficiency of fertilizers, but also ensure the safety and environmental protection of the production process. Here are a few key points to pay attention to when using organic fertilizer fermentation equipment:
 

  1. Use of Uniform Feeder: In the production process of organic fertilizer, uniform feeding is an important link to ensure the quality of fermentation. By using a uniform feeder, the material can be ensured to enter the fermentation equipment continuously and evenly, avoiding the problem of incomplete or excessive fermentation caused by uneven feeding.
  1. Selection and use of fertilizer mixer: mixer plays a role in the production of organic fertilizer. Horizontal Ribbon Mixer and Double Shafts Paddles Mixer are two common types of mixers that ensure an even mix of ingredients and improve fermentation efficiency. When using, pay attention to the mixing speed and time to avoid destroying the microbial activity in organic fertilizer.
  1. Application of fertilizer Screening Machine: Organic fertilizer will produce materials of different particle sizes during fermentation. The Rotary Screening Machine or Vibration Screening Machine can effectively separate the fertilizer particles that meet the standard and improve the uniformity and quality of the final product.
  1. Maintenance of Organic Fertilizer Production Line: Organic Fertilizer Production Line includes multiple links, such as raw material treatment, fermentation, drying, screening and packaging. Regular maintenance and inspection of all aspects of the equipment, such as Fertilizer Granules Compaction Machine, Flat-Die Pellet Machine, Rotary Drum Granulator, etc., can ensure the continuous and stable operation of the production line. Reduce the risk of failure.
Organic-Fertilizer-Production-Line1
  1. Operation of Compost Turning Machine: compost turning machine, such as Windrow Compost Turning Machine, is the key equipment to improve the efficiency of compost fermentation. Proper operation can ensure the air permeability and temperature control inside the compost, promote the activity of microorganisms, and accelerate the decomposition of organic matter.
  1. The rational use of fertilizer crusher: In the production process of organic fertilizer, the crushing of materials is an important step to improve the fermentation efficiency. Equipment such as Cage Crusher can crush large pieces of material into a suitable size for fermentation, but the crushing size should be adjusted to avoid excessive fine materials affecting the fermentation effect.
  1. Environmental control: During the use of organic fertilizer fermentation equipment, the temperature, humidity and pH value of the fermentation environment need to be strictly controlled to ensure the activity of microorganisms and fermentation efficiency. At the same time, it is also necessary to pay attention to ventilation and stacking to avoid the accumulation of harmful gases.
  1. Safe operation: When operating organic fertilizer fermentation equipment, the relevant safety procedures must be followed to ensure the safety of the operator. This includes properly wearing protective equipment, following instructions in the operating manual, and conducting regular safety training.

 
Through the strict implementation of these precautions, you can ensure the efficient, safe and environmentally friendly operation of organic fertilizer fermentation equipment, so as to produce high-quality organic fertilizer to meet the needs of modern agriculture.

Dynamic synergy between NPK fertilizer production lines and the agricultural production cycle

NPK fertilizer production isn’t a fixed process; it’s a dynamic system deeply integrated with the agricultural production cycle. Two to three months before spring plowing, NPK fertilizer production lines should prioritize production of high-nitrogen formulas (such as 25-10-10) to meet the nutritional needs of seedling crops like wheat and corn. During this period, granulation production should be adjusted to increase daily production capacity by 30%, while also stockpiling raw materials to avoid supply interruptions during the peak spring plowing season.

During the summer fruit and vegetable bulking season, NPK fertilizer production lines must quickly switch to high-potassium formulas (such as 15-10-25). A modular silo design allows for formula conversion within four hours, and a low-temperature granulation process (controlled at 55-60°C) is used to minimize potassium loss.

After the autumn harvest, to meet soil maintenance needs during the fallow period, NPK fertilizer production lines will increase the proportion of slow-release NPK products containing humic acid. This requires extending the coating process and adjusting the nutrient release cycle from 30 days to 90 days.

This dynamic synergy requires the establishment of a “farming cycle-production plan” linkage mechanism. By analyzing historical planting data to predict demand, this ensures that fertilizer supply is precisely matched to crop nutrient absorption points, avoiding production capacity waste and ensuring agricultural production efficiency.

Technical adaptation strategies for organic fertilizer production lines in low-temperature environments

The impact of low temperatures in northern winter on organic fertilizer fermentation efficiency has necessitated low-temperature adaptation of organic fertilizer production lines. Key measures focus on maintaining fermentation temperature and raw material pretreatment.

In terms of bacterial strain selection, production lines must utilize low-temperature-tolerant composite inoculants to ensure viability at temperatures between 5-15°C (with a viable bacterial count retention rate exceeding 85%), shortening fermentation start-up time to within 24 hours.

In terms of workshop design, insulation and a photovoltaic-assisted heating system are required to maintain the fermentation room temperature above 10°C through solar heating. Some organic fertilizer production lines also utilize closed fermentation chambers, utilizing bioheat generated during the fermentation process to maintain a constant internal temperature (temperature fluctuations within ±3°C).

In raw material pretreatment, to address the difficulty of raw materials such as straw degrading at low temperatures, production lines incorporate a pre-crushing step (crushing the raw materials to 0.5-1 cm) and use hot water humidity control (controlled at 30-40°C) to raise the initial raw material temperature and ensure fermentation efficiency.

These adaptation measures have increased the capacity utilization rate of organic fertilizer production lines in northern winter from the original 50% to over 80%, and the organic matter content of finished fertilizers has stabilized at over 55%, effectively ensuring the supply of fertilizers for agricultural production in northern winter.

How to choose the right organic fertilizer fermentation equipment?

The market prospect of organic fertilizer is broad, and more and more medium and large farms choose to process livestock manure into organic fertilizer for sale. The most important step in the production of organic fertilizer is the fermentation of organic raw materials. During the fermentation process, the raw materials need to be turned over so that the middle materials can be fully exposed to the air for fermentation and decomposition and water removal. Due to large-scale production, the processing capacity of organic raw materials is very large, and it is unrealistic to carry out manual flipping, which requires the use of flipping equipment. There are many types of flipping equipment on the market, and it is difficult to choose a suitable flipping equipment. This article simply describes the common tossing equipment and use scenarios on the market.
 

1.Simple Compost Turning Machine

Fermentation tanks need to be built, and with the help of mobile cars, it is possible to rotate between multiple fermentation tanks and reduce investment.
Tossing depth 0.8-1.8 meters, width 3-6 meters.
Can advance 1-2 meters per minute, the walking speed depends on the density of the material, the density is large, the walking speed is slow.
Application scenario: Daily organic raw material processing capacity of more than 20 tons, annual output of 6,000 tons of organic fertilizer. There is no need for manpower when the tilting machine is working.
 

2.Wheel Type Windrow Compost Turning Machine

 
The requirements for the workshop are higher, the wall must be strong, and the indoor operation.
Flipping span up to 33 meters wide, depth up to 1.5-3 meters, suitable for deep flipping operations.
Application scenario: Daily organic raw material processing capacity of more than 30 tons, annual output of 10,000 to 20,000 tons of organic fertilizer. The tilting machine works automatically without manpower.
 

3.Double Screws Compost Turning Machine

螺旋翻抛机_1
Compared with the wheel type throwing machine, the double wheel disk as the name suggests is 2 roulette one operation, the efficiency is very high.
The requirements for the workshop are higher, the wall must be strong, and the indoor operation.
Flipping span up to 33 meters wide, depth up to 1.5-3 meters, suitable for deep flipping operations.
Application scenario: Daily organic raw material processing capacity of more than 30 tons, annual output of 10,000 to 20,000 tons of organic fertilizer. The tilting machine works automatically without manpower.

4. Chain Compost Turning Machine

Fermentation tanks need to be built, and with the help of the mobile car, it is possible to rotate between multiple fermentation tanks.
The walking speed is fast, the flipping depth can reach 2 meters, suitable for deep slot operation.
Equipped with a shifting machine to change the slot can realize the multi-slot operation of a flipping machine, saving investment.
Since the tilting plate is inclined, after each tilting, the material as a whole will move forward. The next time you stack the material, put it directly at the back of the field.
Application scenario: Small fermentation site, deep fermentation tank, daily organic raw material processing capacity of more than 30 tons, annual output of 10,000 to 20,000 tons of organic fertilizer. The tilting machine works automatically without manpower.

5.Crawler-type Turning Machine


No need to build a trough, just pile the fertilizer into strips. The stacking spacing is 0.8-1 meters, and the stacking height is 0.6-1.8 meters, which saves investment cost and is convenient for expansion.
The dump plane has a cockpit, and workers can isolate some of the odor when operating the machine.
Application scenario: Daily organic raw material processing capacity of more than 5 tons, annual output of 3,000 tons of organic fertilizer. When the tilting machine is working, a worker is required to operate the machine.

How can organic fertilizer production lines adapt to the needs of ecological agriculture?

Ecological agriculture’s requirements for “no chemical additives” and “full-cycle composting” of fertilizers are driving targeted adjustments to organic fertilizer production lines.

In ecological farming, the use of chemical regulators is prohibited. Organic fertilizer production lines must optimize the microbial community structure to achieve natural composting of raw materials. For example, complex microbial agents can be used instead of traditional chemical ripening agents to ensure that no exogenous pollutants are introduced during the fermentation process.

At the same time, ecological agriculture emphasizes the “cultivation-livestock cycle.” Organic fertilizer production lines must adapt to a variety of ecological raw materials, such as rice husks and mushroom residues, using precise pulverization and mixing processes to ensure balanced nutrient release.

Furthermore, to meet the demand for “light and simplified fertilization” in ecological farming, end-of-line production lines must enhance granulation and slow-release technologies to adapt fertilizers to various ecological farming scenarios, such as drip irrigation and broadcasting, thus achieving a closed loop of “fertilization-growth-soil maintenance.”

At present, the application rate of products of this type of organic fertilizer production line adapted to ecological agriculture in ecological fruit and vegetable planting has increased by 35% compared with ordinary production lines. After some ecological tea gardens adopted this type of fertilizer, the tea polyphenol content in tea increased by an average of 8%, and the pass rate of pesticide residue detection remained at 100%, further verifying the adaptability of the production line to ecological planting.