How does a rotary drum granulator work in an organic fertilizer production line?

In organic fertilizer production lines, a rotary drum granulator is the core equipment for raw material formation. It has become a mainstream choice because it meets the cohesiveness and granularity requirements of organic fertilizers such as livestock and poultry manure and composted straw. Its operation revolves around “raw material mixing – granule agglomeration – screening and output,” resulting in an efficient and stable mechanism.

The equipment primarily consists of an inclined drum (3°-5° inclination), a transmission system, a spray system, and a scraper assembly. Scrapers on the inner wall of the drum drive the material to tumble, while the spray system regulates moisture. The scraper removes material adhering to the drum wall to prevent clogging.

The first step is “raw material pretreatment and feeding.” Composted and crushed organic fertilizer raw materials (25%-35% moisture) are mixed with auxiliary materials such as clay in a suitable proportion and then fed into the drum through the feed port. The motor drives the drum to rotate at a low speed of 10-15 rpm. The scrapers repeatedly lift and drop the material, forming a uniform layer.

The second step is the core “granule agglomeration and formation” phase. A spray device applies a metered amount of water or adhesive, depending on the moisture content of the raw materials, to create a sticky surface. As the drum rotates continuously, the material particles agglomerate into small particles through collision, friction, and compression. These small particles further absorb the raw materials and grow to qualified granules of 2-5mm. The tilted design of the drum allows the particles to naturally move toward the discharge end, enabling continuous production.

The final step is “granule screening and optimization.” The formed granules are screened to separate fine powder from bulky material. The fine powder is returned to the granulator, while the bulky material is crushed and reused to ensure acceptable yields. Furthermore, a scraper cleans the drum wall of any residue in real time to ensure efficiency and prevent hardened residue from affecting subsequent production.

In short, the rotary drum granulator uses gentle physical agglomeration to adapt to the characteristics of organic fertilizer raw materials, efficiently producing uniform granules and providing a key guarantee for the stable operation of organic fertilizer production lines.

Key Maintenance Points for Disc Granulators in Organic Fertilizer Production Lines

In organic fertilizer production lines, the disc granulator is the core equipment for raw material processing. Its operating condition directly affects product quality and production efficiency. Scientific maintenance can extend equipment life, reduce downtime, and lower costs. The following details maintenance methods from three perspectives: daily, periodic, and long-term.

Daily maintenance requires “cleaning and inspection in tandem.” After each shutdown, promptly clean the discs of residual material to prevent hardening and scratching of the disc surface or increased operating load. Use soft tools to prevent damage to the liner. Also, check the disc’s tilt angle (normally 45°-55°). If offset, correct it using the bracket bolts. Observe the transmission system daily for abnormal noise and check the motor and reducer temperatures. If the temperature exceeds 60°C, shut down the machine for inspection.

Regular maintenance focuses on “component maintenance and lubrication.” Perform a comprehensive weekly inspection, focusing on the meshing of the transmission gears. Adjust and replace any wear or excessive clearance. Inspect the bearing seals to prevent dust intrusion. Replace the bearing grease monthly. Choose a high-temperature, dust-resistant lithium-based grease, filling it to fill 2/3 of the bearing’s internal space. Disassemble and inspect the scraper blade quarterly. If the blade wear exceeds 3mm, polish or replace it. Ensure a 1-2mm gap between the blade and the liner to prevent material adhesion.

For long-term maintenance, maintain “equipment inspection and record keeping.” Perform a comprehensive annual disassembly and inspection. If the liner thickness decreases by 1/3, replace it entirely. Perform a flaw inspection on the frame to identify any weld cracks and repair them. Maintain a maintenance log, recording maintenance times, details, and replaced parts. Use data analysis to predict failures and plan maintenance in advance.

In short, disc granulator maintenance should adhere to the principle of “prevention first, prevention combined.” This involves combining daily cleaning, regular maintenance, and ongoing inspections to ensure optimal equipment operation and a stable and efficient organic fertilizer production line.

Scientific Maintenance of Organic Fertilizer Production Equipment

The stable operation of organic fertilizer production equipment is key to ensuring fertilizer quality and production efficiency. A scientific maintenance system can effectively extend equipment life and reduce the risk of failure. Targeted maintenance measures are required for equipment throughout the entire process, from pretreatment to finished product packaging, tailored to its characteristics.

Maintenance of pretreatment equipment focuses on preventing blockage and wear. As the first step in processing raw materials such as straw and manure, the crusher requires daily inspection for blade wear and weekly sharpening to prevent blunting and reduced pulverization efficiency. Screening machines require regular cleaning of residual fiber debris and monthly inspection of screen tension to prevent vibration-induced loosening that reduces screening accuracy. For conveying equipment, special attention should be paid to the tightness of the conveyor belt and the lubrication of the rollers to prevent failures caused by frictional overheating.

Granulating equipment requires timely cleaning and maintenance. The disc granulator‘s disc should be cleaned of residual particles daily and coated weekly with an anti-stick coating to prevent material from clumping and sticking. Bearings should be lubricated with high-temperature resistant grease monthly to ensure smooth rotation. The roller surface of the roller granulator should be regularly inspected for wear and any dents should be repaired promptly to avoid compromising pellet quality.

Maintenance of post-processing equipment focuses on precision and safety. The hot air ducts of the drum fertilizer dryer should be cleaned of dust monthly to prevent blockages that affect thermal efficiency. The temperature sensor should be calibrated weekly to ensure precise control of the drying temperature. The fan filter of the cooler should be cleaned regularly to prevent debris from entering and affecting heat dissipation. The metering device of the packaging machine should be calibrated weekly, and the drive chain of the conveyor belt should be lubricated monthly to ensure accurate quantitative packaging.

Establishing an equipment maintenance mechanism provides long-term protection. Recording the time, content, and troubleshooting of each maintenance session can help identify recurring problems promptly. Operators should also receive professional training to ensure early resolution of minor faults and early prevention of major problems. Scientific maintenance not only reduces equipment failure rates but also ensures the continuity and stability of the organic fertilizer production line, providing reliable support for the green development of agriculture.

The Secrets of the Disc Granulator in an Organic Fertilizer Production Line

At the heart of an organic fertilizer production line, the disc granulator, with its unique operating principle, transforms loose organic raw materials into uniform granules, becoming a key piece of equipment connecting fermentation and finished products. While its seemingly simple operation requires precise control of material properties and mechanical movement, the disc granulator’s core structure consists of a tilted circular disc, the angle of which can be adjusted according to the characteristics of the raw materials. When fermented and pulverized organic materials (such as a mixture of livestock and poultry manure and straw) are fed into the disc, the disc rotates at a constant speed, causing the materials to slide upward along the disc wall under the combined effects of centrifugal force, friction, and gravity. Once they reach a certain height, they fall due to gravity, forming a continuous material circulation.

The key to the granulation process lies in the proper ratio of water to material. As the disc rotates, a spray system evenly applies an appropriate amount of water to the material, forming a moist film on the surface of the organic granules. As the materials collide and squeeze each other during this circulation, the moistened surfaces of the granules attract surrounding fine particles, gradually expanding like a snowball. The operator monitors the granulation process and adjusts the water spray rate and disc speed in real time to ensure uniform particle size.

The disc granulator‘s advantage lies in its adaptability to organic materials. Organic fertilizer raw materials are complex and high in fiber. The gentle rotation of the disc reduces material loss while preserving the activity of beneficial microorganisms. For materials with high humidity, the disc’s tilt angle can be adjusted to reduce the material’s residence time within the disc, preventing sticking and clumping. For dry materials, the disc’s rotation speed can be slowed to prolong agglomeration.

Organic fertilizer granules processed by the disc granulator are not only easy to store and transport, but also enable a slow release of nutrients upon application. With its simple and efficient design, this equipment bridges the gap between raw materials and finished product in the industrial production of organic fertilizer, providing solid technical support for the large-scale development of organic agriculture.

How to Choose the Right Double Roller Press Granulator for Farms

Due to its unique advantages, double-roller press granulators have become essential equipment for farms to process manure and produce organic fertilizer. When selecting a granulator, you need to consider multiple factors to ensure it meets your production needs.

First, you need to determine your production scale. Small and medium-sized farms have limited daily manure processing capacity, so choosing a small machine with an hourly capacity of 1-3 tons can meet daily granulation needs while avoiding idle equipment. Large-scale farms require a machine with an hourly capacity of 5 tons or more and strong continuous operation capabilities to ensure timely manure processing and stable fertilizer output.

Second, consider the characteristics of the raw materials. Farms primarily use livestock and poultry manure as their raw material, which is high in moisture and contains impurities such as crude fiber. Therefore, the equipment needs to have strong anti-clogging capabilities, and the roller surface should be made of a non-slip and wear-resistant material to prevent slippage and affect granulation efficiency.

Supporting facilities should be planned simultaneously. It’s recommended to use pre-treatment equipment such as dewatering machines and crushers to control the moisture content of raw materials within an appropriate range, and to configure screening devices to grade finished particles to improve fertilizer quality. Furthermore, consider equipment energy consumption, prioritizing energy-efficient models to reduce operating costs.

A balance should be struck between price and after-sales service. Avoid blindly pursuing low-priced equipment, as its materials and workmanship may be defective and increase maintenance costs. Choose a manufacturer that can provide installation and commissioning, operator training, and rapid fault response to ensure stable operation after the equipment is commissioned and minimize losses caused by downtime.

A comprehensive assessment of production scale, raw material characteristics, equipment quality, supporting capabilities, and after-sales service is crucial to selecting a double-roller press granulator suitable for your farm, ensuring efficient resource utilization of manure.

How to Process Compound Fertilizer Using a Rotary Drum Granulator

With the development of agriculture and technological advancements, market demand has become increasingly diversified. Rotary drum granulators have also attracted significant attention for their high efficiency, ease of operation, and excellent granulation results, making them a standout among other fertilizer granulators.

In the fertilizer production process, fertilizer granulators are crucial for determining fertilizer yield and quality. The quality of this equipment directly impacts the user’s economic benefits. During the rotary drum granulator production process, increasing the material temperature is necessary to improve the solubility of the granules. To reduce heat energy consumption during the drying process, the performance of the granulator must be effectively maintained.

To reduce production costs throughout the fertilizer production process, low energy consumption and high efficiency must be achieved at every stage of the granulation process. A high granulation rate in a rotary drum granulator ensures consistent production. To ensure this high granulation rate, the smoothness of the granulator’s inner wall must be enhanced. A smooth inner wall reduces friction, allowing the material to roll back and forth and quickly form granules. Our rotary drum granulator differs from traditional granulators. As the granulator’s lining rotates upward with the drum, it sags due to its own weight, allowing any material adhering to the lining to fall due to gravity, thus automatically removing lumps. Furthermore, this reduces the amount of water added during the granulation process, thereby alleviating the drying load during fertilizer processing.

In fertilizer production, large-scale rotary drum granulators can be equipped with two drum fertilizer screeners. The first is used to remove fines and small particles. The second drum fertilizer screener has two screen sections. One section, with a small mesh, selects particles that meet the requirements. These particles are then conveyed by a conveyor to the packaging machine. The other section, with a mesh, removes oversized particles, which are directly sent to a chain crusher for crushing before returning to the granulator.

Cost Analysis of Chicken Manure Fertilizer Processing in an Organic Fertilizer Production Line

Chicken manure is indeed a high-quality organic fertilizer raw material, rich in organic matter, nitrogen, phosphorus, potassium, various trace elements, enzymes, and microorganisms. Through standardized aerobic composting processes, it effectively degrades organic matter, kills parasite eggs and pathogens, and renders it harmless and stable. This can then be produced into commercial organic fertilizer through an organic fertilizer production line, creating economic benefits for chicken farms while fundamentally addressing environmental pollution.

However, processing chicken manure into commercial organic fertilizer does involve certain production costs, which can be primarily categorized into the following aspects. First, equipment investment is the core, one-time investment. A complete production line typically includes fermentation and compost turning equipment, a crusher, a mixer, a granulator, a dryer, a cooler, a screener, and an automatic packaging machine. The choice of granulator significantly impacts cost and product form. For example, a rotary drum granulator offers high output, a disc granulator offers a high granulation rate, and a flat die granulator is suitable for organic materials. Different granulator models have varying prices and energy consumption. Secondly, the costs of the pretreatment and fermentation processes cannot be ignored. Fresh chicken manure is sticky and moist, typically with a moisture content exceeding 70%, while the optimal fermentation moisture content needs to be adjusted to 50%-60%. Therefore, a large amount of auxiliary materials (such as straw, sawdust, and mushroom residue) are often required to adjust the moisture and carbon-nitrogen ratios. The procurement, transportation, and crushing of these auxiliary materials all incur ongoing costs.

The initial equipment investment for processing chicken manure in an organic fertilizer production line is relatively high, and ongoing operations also require ongoing investment. The cost level depends largely on the production scale, the degree of automation, the availability and price of raw materials, and the positioning of the final product. For large-scale chicken farms, although the initial investment is high, in the long run, the comprehensive benefits of addressing environmental pressures and creating economic value by turning waste into resources are significant, making the cost acceptable.

Factors Affecting the Production of Compound Fertilizers Using a Disc Granulator

When producing compound fertilizers using a disc granulator, many factors influence granulation, such as disc diameter, disc speed, disc inclination, nozzle aperture, and moisture content. Generally speaking, disc inclination has a greater impact on the granulation rate, while disc speed has a greater influence on the compressive strength of the granules.

The moisture content of disc granulation significantly influences both the granulation rate and the compressive strength of the granules. When the moisture content of the material is controlled within the range of 16%-20%, the granulation rate and compressive strength of the granules are optimal. Too little moisture results in a low granulation rate; too much moisture causes the material to clump and stick together, resulting in a reduced granulation rate. When the moisture content is too low, the compressive strength of the granules increases with increasing moisture content, which is beneficial for improving the compressive strength of the granules. However, when the moisture content is too high, the excess moisture disrupts the interactions between fertilizer molecules, causing the dried granules to crack and resulting in a decrease in compressive strength. Before using a disc granulator, the optimal moisture content, disc speed, and disc inclination angle should be tested to ensure high fertilizer production line efficiency and high pellet quality. Furthermore, the finer the raw material powder, the better the granulation effect.

Disc granulators are widely used in organic fertilizer production lines and compound fertilizer production lines. Fertilizer production using disc granulators offers low investment, high output, simple process, and intuitive operation, resulting in excellent economic and social benefits.

Current Status and Development Trends of the Rotary Drum Granulator Market

As a key piece of equipment for powder granulation, the current market for rotary drum granulators exhibits distinct characteristics and clear trends.

Currently, market demand for rotary drum granulators is extremely strong. In the agricultural sector, with growing interest in green and environmentally friendly fertilizers, the production of organic and compound fertilizers is expanding, significantly driving demand for drum granulators. Many organic and compound fertilizer manufacturers are investing in advanced rotary drum granulators to improve production efficiency and ensure product quality. In addition to agriculture, industries such as chemicals and feed are also increasing their investment in drum granulators due to demand for granular products.

Market competition is becoming increasingly fierce. The influx of manufacturers has led to a complex product range and varying quality. Large companies dominate the market, leveraging their strengths in technological research and development, quality control, and after-sales service networks. Smaller companies rely on low prices to compete, but lag significantly behind in quality and innovation.

Technically, high-end equipment is becoming the mainstream. Models with automated control, intelligent monitoring, and high-efficiency energy-saving features are increasingly popular. They improve production efficiency and product quality while reducing labor and energy costs, meeting the demands of intelligent and green production.

Future development directions are clear: First,intelligent upgrades: equipment will enhance self-diagnosis and automatic adjustment capabilities, enabling parameter adaptation and unmanned production. Second,deepening energy conservation and environmental protection efforts: adopting advanced technologies and designs to reduce energy consumption and emissions, meeting stringent environmental requirements. Third,specialized segmentation: developing customized products for different industries, raw materials, and needs to meet individual market demands.

In short, the rotary drum granulator market presents both opportunities and challenges. Companies must focus on technological innovation, quality improvement, and service optimization to remain competitive.

The Important Role of Disc Granulators in Fertilizer Production Lines

In the granulation process of fertilizer production, disc granulators, with their unique structure and performance, are the preferred equipment for small and medium-sized production lines. Known as the “precision shaper” of fertilizer granules, their core advantage lies in efficiently converting powdery materials into regular granules, balancing production efficiency and product quality.

The simplicity of their structural design is a notable feature. The main body consists of an inclined disc, a transmission mechanism, and a frame. The disc’s inclination can be adjusted within a certain range, controlling the material’s residence time within the disc. This minimalist design not only reduces equipment failure rates but also facilitates routine maintenance. Compared to drum granulators, the disc granulator occupies nearly half the floor space, making it particularly suitable for production environments with limited space.

The wide range of compatible raw materials enhances its practical value. Disc granulators can be used for granulation in both organic fertilizer production lines and NPK compound fertilizer production lines. Their unique rolling granulation method reduces clumping of materials with high moisture content. For organic raw materials containing coarse fiber, they can also gradually agglomerate to form stable granules, eliminating the need for complex pretreatment. Energy and cost-effectiveness highlight competitive advantages. Compared to extrusion granulators, disc granulators consume less power and require no mold replacement, reducing equipment wear and maintenance costs. Furthermore, their stable continuous production capacity allows a single unit to meet the production needs of small and medium-sized fertilizer plants, helping companies reduce initial investment and operating costs.

Amid the development of green agriculture, disc granulators, with their high efficiency, flexibility, and cost-effectiveness, have become a crucial piece of equipment in the fertilizer forming process, providing strong support for improving fertilizer quality and promoting sustainable agricultural development.